Lecture 3 Distributions - function that represents the chance of seeing a particular out come out of all possible outcomes $P(X) \leftarrow 0 \leq P(x) \leq 1$ for any X $\sum P(x) = 1 \in \text{normalized}^{F}$ Characterize à distribution. "moments" $Z \times P(X)$, 1th moment Eg $M = \sum P(x)$ and $\sum x^2 P(x)$

Binomial distribution independent Chance of m cuents in N trials $P(m;N) = \binom{N}{m} P^{M} (1-p)^{N-M}$ p is a chence on a single trial $\binom{N}{m} = \frac{N!}{(N-m)!(m)!}$ $Max \begin{pmatrix} N \\ m \end{pmatrix} \leftarrow M = \frac{N}{2}$

Chence of M events in some fixed interval or area, in limit p->0 "rare events"

limit N->00, p->0 $P(m_j \mu) = \mu^{n} e^{-\mu}$ n! Mean pr Voniance = M

of the

ial distribution

< m is men

unitless

Z molecules in 1 gridspot

< Smallpe

Calculus review function gives you Slope of a function (D derivative, c) derivative is the slope at a point (c)f(a)(x)£86) C f(x+h) - f(x) $f'(x) = df = \lim_{h \to 0} h$

must have Max, min df dx a if max or min D b/c store has to charge sign Max, min $\int Saddle df = 0$ dk dk $d df = d^2 f$ $dx dx = \sqrt{2} f$

think about $\frac{hink \ about}{f(x)} = x^2 \xrightarrow{df}_{2x} 2x \xrightarrow{2f}_{2x} = 2$ $f(x) = -x^2 = -2x^{-2} - 2$ $d(x) = x^{n}$ $\frac{dg}{dx} = n x^{n-1}$ g(x) = ln(x) $dg/dx = \frac{1}{x}$ (constant is D

Integrals "Aren under a curve" I integral = TIM-UM onti derivetre $\int_{a}^{b} df_{dx} = f(b) - f(a)$ a $\int_{a}^{b} dx = lose information$ derive tive - $\int_{T_X} df dx = f(x) + C$

cts distributions. $\langle x^n \rangle = \int_{-\infty}^{\infty} P(x) dx$ "domain" of P(x)? p zero outside some region $\int_{x}^{b} x^{n} P(x) dx \quad \text{if } P(x) = o \text{ for} \\ x > 6$

 $\times >5$ XLG

 $Var(x) = \int (x - \mu)^2 P(x) dx$

Preview: product rule $\frac{d}{dx}(fg) = \frac{df}{dx}(x) + f(x)\frac{dg}{dx}(x)$ differentials nultiply dx " $d(f_g) = (df)g + f(d_g)$

