

2 kinds of catalysis

Heterogeneous E Different phase Solid catalyst, liques reactant

Homogenous E same pluse

Solution & reactants Katalyst

l'aargenis Metals bidlogie l'enzymes

En zymes & passive Fractive

Michelis - Menten Scheme

C+SESEEEEEEE

Patp = Ob Faction = F Fach_ + AUP + P;

ZESZETP E + STotal E 15 coast d[S]d+ $= -k_f [E] [S] + k_b [ES]$ d[P] = dt $k_{f}^{2} [ES] - k_{b}^{2} [EJ[P]]$ $= k_{f} \left[\mathcal{E} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \right] + k_{b}^{2} \left[\mathcal{E} \mathcal{I} \right] \\ - k_{b}' \left[\mathcal{E} \mathcal{S} \right] - k_{f}^{2} \left[\mathcal{E} \mathcal{S} \right] \right]$ $\frac{d [ES]}{dt}$

$\Gamma \in J = \left[\mathcal{E} \right] - \left[\mathcal{E} S \right]$

Assumption ESJ >> EEJ EESJ complex IS 19 SS.

 $[\mathcal{E}S]_{SS} = (k_f' [S] + k_b^2 [P]) [\mathcal{E}]_b$

 $kf' [S] + kb' + kb^2 [P] + kf^2$

dEsJ = kf' [EJES] - kb' [ES]rate $EEJ = EEJ - EESJ \in CESJ \in CE$ $(k_f k_f^2 \Gamma SJ - k_b' k_b^2 \Gamma J) \Gamma E J_0$ rale = $kf_1 \sum f_{k} + kp_1 + kp_2 \sum f_{k} + kt_s$ at time \

rale =
$$(k_f^{\dagger}k_f^2 \sum J - k_b^{\dagger}k_b^2 \sum J)$$

 $k_f^{\dagger} \sum J + k_b^{\dagger} + k_b^2 \sum PJ$
what is the initial rade of reaction
 $af \in \infty$, $\sum J = \sum J_0$, $\sum F$
 $r_0 = \frac{k_f^{\dagger}k_f^2 \sum J_0 \sum EJ_0}{k_f^{\dagger} \sum J_0 \sum EJ_0}$
 $k_f^{\dagger} \sum J_0 + k_b^{\dagger} + k_f^2$
 $k_f^{\dagger} \sum J_0 \sum EJ_0 + k_m$

 $r]) \Gamma \epsilon J_{0}$

[b]+kts

tion :

[P] = O

Michaelis k6 + kf kť, s of come.

 $\Gamma_0 = K_{cat} [S]_0 [E]_0$ $= \frac{\Gamma S J_0}{\Gamma S J_0 + K M}$ $\Sigma S J_{G} + K_{M}$ Mits k_{M} "is" the ancentration where $r_{0} = \Gamma_{MeK}/2$ $EsJ_{0} << K_{M}$ rate $\propto ESJ_{0}$ 2 limits $[S]_{o} >> k_{M}$ rete is Othorder 17 [57, Max = Krat [E]

Catelytic efficiency

$$E = \frac{K_{cct}}{K_{M}}, \quad \text{units of } -\pi$$

$$Cange \quad 10^{-1} \quad 10^{10} \quad M^{-1}$$

$$10^{8} - 10^{10} \quad \text{diffusi}$$
biggest when $K_{cat} \in E_{f}$ o
$$K_{b}' \quad \text{is sm}$$

are Big nall

ynamics ((h4 Burick)

operties

k system

arrange Menty

re an average

wil molecule

[boat] Echair] Cy

 $\langle \hat{c}_{boct} \rangle = \frac{1}{K_b}$ $\langle 2cheir \rangle = \frac{1}{k_{\rm f}}$

at time t, how likely an I te be in stated at time f + At

corpelation of Measure $Sq(t) = q(t) - \langle q \rangle$ $C(\Delta t) = \langle S_{g}(t + \Delta t) S_{g}(t) \rangle$ <8q(+)8q(+)> ((o) = l C ((->∞) = C(+)

 $\int_{0}^{0} C(\Delta t) d\Delta t$ for 1st order Zrxn = K an "ensemble" the same of