

Distributions - function clear
$$
\frac{1}{2}
$$

on observation in an experiments
Normalized - som/integral our observability = 1
Last time:

Each
$$
time
$$

\nBinomial distribution

\nChange of im^n successes in "N" trials

\nSometimes the change p

\nSimilarly, the value p

\nwe say, this, we have $(-p)$ there

$$
P(n, N) = \frac{N!}{(N-n)!n!} p^{N-n} \qquad \text{for all } N \in \mathbb{N}
$$
\n
$$
Poisson_{initial} \qquad \text{with } n \in \mathbb{N}
$$
\n
$$
Poisson_{and} \qquad N \to \infty
$$
\n
$$
Poisson_{and} \qquad N \to \infty
$$
\n
$$
\text{with } N \to \infty
$$
\n
$$
\text{with } N \to \infty
$$

$$
Poisson: \lambda^{v_{rate}y}, number of occurrence\non average\n
$$
P(m) = e^{-M} \mu^{M} [m some interval]
$$
\n
$$
m times
$$
\n
$$
Expample: Padivocchue decay
$$
\n
$$
C^{14} - \frac{1}{2} i\hbar
$$
\n
$$
S700 years
$$
$$

Eg:
$$
lnr
$$

\n $tan\theta = \frac{ln2}{t_{12}} \sim 10^{-5}$
\n $tan\theta = \frac{ln\theta}{t_{12}}$
\n $tan\theta = \frac{ln\theta}{t_{12}}$
\n $tan\theta = \frac{ln\theta}{t_{12}}$
\n $tan\theta = \frac{ln\theta}{t_{12}}$
\n $tan\theta = ln\theta = ln\theta$
\n $tan\theta = ln\theta = ln\theta$

 \bullet

 $\int e^{asi\theta} \frac{d[x]}{dt} = K[x] \rightarrow [x](t) = [x](0) e^{-kt}$ $x(t)/x(0) = 1/2$ = $\frac{1}{2} = e^{-kt}x^2$ $-|12=-kt$ t_{12} = ln^2/k

Space interded Example 2 Spacial volume - $(nm)^3$ $IM = 6x10^{23} \frac{mc}{l} \times \frac{1l}{1000m} \frac{lml}{cm^{3}}$ $=6\times10^{20} \frac{\text{arc}}{\text{cm}^3} \times (\frac{1cm}{107 \text{cm}})^3$ $= 0.6$ MC/
 $6\pi c$ /mm³ $\int M$ ~

 $\gamma(1)$ 14 $\frac{-0.6}{1!}$ 0.6 $\int (2) \sim e^{-.6} (.6)^2_{11}$

 $\mu \sim .6$

 0 ar \sim . 6

 $[H_{2}03 \sim 55 M]$

 33 Hz OMC/AM3

Sample mech
\n
$$
\overline{\mu} = \frac{1}{N_{obsorption}} \sum_{i=1}^{N_{observation_max}}
$$

\n $\sigma^2 = \frac{1}{N_{obsorption}}$
\n $\Rightarrow \frac{N_{obs}}{N_{obsorption}}$
\n $\Rightarrow \frac{N_{obs}}{N_{obsorption}}$
\n $\Rightarrow (x_i - \overline{\mu})^2$
\n $\Rightarrow (x_i - \overline{\mu})^2$
\n $\Rightarrow (x_i - \overline{\mu})^2$
\n $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \langle x^2 \rangle - \mu^2$

For a distribution
\n
$$
\mu = \sum_{i=1}^{K_{\text{pissibilihuj}}}\chi_{i}P(x_{i})
$$
\n
$$
\mu = \sum_{i=1}^{K_{\text{pissibilihuj}}}\chi_{i}P(x_{i})
$$
\n
$$
\gamma_{\text{or}}(x) = \langle x^{2} \rangle - \mu^{2}
$$
\n
$$
\sum_{i=1}^{K_{\text{pissibilihuj}}}\chi_{i}^{2}P(x_{i})
$$

Cts distributions Gavorian / Normal $- (x-\mu)^2$ $P(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \sigma$ $\langle x^{2}\rangle - \langle x^{2} \rangle^{2} = \sigma^{2}$ $\langle x \rangle = \mu$ Chance In internel - $\int_{\alpha}^{\beta} P(x) dx$ $I = \int_{-\infty}^{\infty} \rho(x)dx$

Monsents

 $\langle x^n \rangle = \int_{-\infty}^{\infty} x^n P(x) dx$

Distribution # 2 distribution Eg
Fine until
first event $P(t) = \frac{1}{\gamma} e^{-t/\tau}$ exponentially distributed only are parameter

inlegml is over all possible values

$$
\angle
$$
+ \rangle = \int_{0}^{∞} + $P(H)d+=\int_{0}^{\infty}f\frac{1}{r}e^{-t/\tau}dt$

thermodynamics -l'ille charges eg d ε