

 $d\mu^* = -5^*dT + \overline{V}^*dP$
 $d\mu^* = -S^*dT + \overline{V}^*dP$

Slope of line 17 7/T space $\Delta S^{\alpha\rightarrow\beta}$ $\left(\frac{\partial P}{\partial T}\right)_{\mu^{\alpha}=\mu^{\beta}}=\frac{\Delta S^{-1}}{\Delta V^{\alpha-\beta}}$ solid agas $fig \rightarrow gcs$ or \overline{V}_{sol} $\frac{d}{dx}$ $<< \overline{V}_{gas}$ for an ideal gas, $\Delta v_{g\rightarrow R} = v_g - v_g$ $\cos A5 = \Delta H / \tau$, de 06=0 = $\overline{V}_g = \frac{RT}{P}$

 \cdot \tilde{r} $\frac{\Delta M}{RT^2}$ $\frac{\partial P_{\text{int}}}{\partial t} =$ $O(NP)$ ΔH Q $\overline{21}$ $RT²$ phase ΔH \mathscr{C} $ln P_1$ $\frac{\Delta H}{R}$ $\frac{1}{T}$

Channel potentials of mixture			
2	phase	L	
T	II	→	1
note eq	charge	→	
not e eq	charge	with $\mu_{\tau} = \mu_{\tau}$	
G = $n^{\tau} \frac{\pi}{\mu} + n^{\tau} \frac{\pi}{\mu} + (mkrke)$			
pose	pure	energy	
where	pure	angle	

a solution \perp

 $d\mu^{\alpha} = -\vec{S}dT$ $\frac{a}{d}$ $\frac{a}{d}$ + $\frac{c}{d}$ K $\frac{k}{\sqrt{2}}$ $P_{total} = \sum_{i}^{K} P_{i}$ i = 1

du° α $=$ \overline{V}^{α} In solution $J\mu^{\alpha} = \bar{V}^{\alpha} dP^{\alpha}$ In solution
 $\mu^{\alpha} = \bar{V}^{\alpha} dP^{\alpha}$ In solution = / μ μ_{2}
 μ_{3} μ_{4} μ_{5} μ_{5} μ_{6} μ_{7} μ_{8}
 τ_{1} μ_{8} τ_{1} μ_{8} $\boldsymbol{\mu}'$ Stot Fidelgas $J_{\mu}^{\nu} d\mu^{\alpha} = \int_{\gamma^{\alpha}} \frac{RT}{T} dP^{\alpha}$

 $h_{\alpha} =$ μ° - $RTln(\frac{P_{\alpha}}{P_{\alpha}})$ E tof($\mu^{\alpha} - RTln$ $E\tan\%$ ϵ the see discussion (pg!) about different standard states

Raouffs Law Cidec (solution approximation)
Partial pressure of a mixture
1s given by the individual
partial ideal solutions
Called ideal solution

$$
v_{asif}
$$
 the above less don't interact

Do they mix (ideal solution) $\Delta \hat{G} < 0$? $=$ G_{mixed} - $G_{unmixed}$ = $(n_{A}\mu_{A}+n_{B}\mu_{B})$ = $(n_{A}\mu_{A}^{*}+n_{B}\mu_{B}^{*})$ $\mu_i = \mu_i^* + RT ln \chi_i$ $\begin{bmatrix} come & from \\boldsymbol{v} & open\end{bmatrix}$
 $\Delta 6 \text{ m} \times \text{ m} = n_A RT ln T_{\text{A}} + n_S RT ln \chi_{\text{B}} \times n_{\text{A}}$ $\angle G_{mixmy} = \chi_A P T L X_A + X_B R T L X_S$

 $\Delta F = RT (\chi_A h \chi_A + \chi_B h \chi_B)$ only temp dependence A $\Delta \overline{6} = \Delta \overline{7} - 7\Delta \overline{5}$ $15 = R(\lambda_{A}h\chi_{A}+\chi_{B}h\chi_{B})$ always negative and $\Delta H = O$ (Abnormal)

 $M\approx 0$ ideal $\Delta H > 0$ mixing costs energy $\Delta H > 0$ mixing costs energy
 $\Delta H < 0$ mixing lowers energy $MikiS$ $\Delta F = \Delta H - T\overline{\Delta S}$ ↑ similar $\overline{\mathbf{t}}$ prev

Preview : Chemical reactions $aA + bB \geq cC + dD$ $16 =$ depends on MA, Me, Mc, and 4 He,
2, b, --- $16 = -$ RTIn Keg and a b , c .