Lecture 11- Phase Equilibria Why ^I phase over another How does M change with T & ^P

For each phase $\mu^{\pi} = G^{\pi} = H^{\pi} - T\overline{S}^{\pi}$ n^{π} Heat capacity $$ depends on substance

 $\mu^{\pi} = \overline{H}^{\pi} - \overline{T} \overline{S}^{\pi}$ Want $dH = d(E+PU) = dE + pdV + Vdp$ $= (d g - PdV) + PdV + UdP$ $= dq + v dP = TdS + VdP$ C const P $dH = dg = TdS = CpdT$ $dH = C\rho dT$ $dS = \frac{C}{T}dT$

To do integral, start at some reforme temperature $S(T=0) = O$ $H(T_m) = 0$ $S(T) = \int_{0}^{T_{M}} \frac{c_{P}^{sol}d}{T}dT + \int_{T_{M}}^{T_{V}} \frac{c_{P}^{s.l}}{T}dT$
+ $\int_{T_{V}}^{T} \frac{c_{P}^{s.l}}{T'}dT' + \Delta S^{t.l}$

 ω_{phase} transition
 $\Delta b^{f.s} = 0 = \Delta H^{f.s} - T_{n} \Delta s^{f.s}$
 $\Delta S^{f.s} = \Delta H^{f.s} / T_{n}$ $\Delta S^{\nu_{\varphi\varphi}} = \frac{\Delta H^{\nu_{\varphi\varphi}}}{\int^{\cdot}_{\cdot}$ Tu & Tm come from discontinuities $\Delta H^{Rs} = g^{Rs}$ $\Delta H^{\text{ve}} = 2^{\text{ve}}$

Boot: obtails of integrals $H(T)$ for $H_{2}O$ readbon $S(T)$ f_{α} H_2 $N \ge 1$ ENDS Rs 6.4 ree oc $M = \overline{H} - \overline{TS}$ (ice)

Mixtures $= \frac{n^{\pi}}{2}$ γ^{π} η_{tot} $\frac{2}{3}$ $\frac{2}{3}$ ngas $M_{solid} + M_{lip} + M_{gas}$ $G = \sum_{\pi} \chi^{\pi} \mu^{\pi}$

That was all constant pressure What is effect of
being @ different fixed pressures Biggest effect on gas (Whet is the compressibility) $d\mu^{\pi} = -S^{\pi}dT + \bar{V}^{\pi}d\hat{r}$ $PV=nFT$ BOTZU $\mathbf{U} = \mathbf{U}/\mathbf{M}$ $d\mu^{gns} = \overline{V}^{gns}dP = \frac{PT}{P}dP$
If ideal yer

 $\int_{1}^{P}\frac{PT}{P}dP$ $\Delta \mu = \int_{\text{latm}}^{\text{r}} 4\mu =$

 $RT ln (P / ln m)
Im P / ln m$

higher pressures favor phases that are denser denser sure!
Sure! fer water: lig water is more dense then solid ice ice: pî Tw

Resfrictions on phase diagram

\n
$$
d\mu^{\pi} = UdP - SdT
$$
\nOne equation for each p base

\n
$$
d\mu^{\pi} = \frac{1}{\mu} \int_{0}^{\pi} \int_{0}
$$

this line has a slope $(d^P_{\text{dT}})=\frac{\Delta \bar{S}^{1-z}}{\Delta \bar{V}^{1-z}}$ \Leftarrow rekt Claussius-Clapyron Equation time Gibbs - Pluse Rule # components - # crexisting
+ 2 = De grees of freeding Thirs you are chease & maintain eg