Statistical connection between MICroscopic & Macroscopic properties Microscopic (atomistic) -molecular properties x_1y_1z of each outon of $v_{x_1}v_{y_1}v_{z}...$ Spin of cach of each atom Maeroscopic (Thermodynamic) T, P, Next capicity, coefficient of themel expansion

Macrostetes - Chanceloizes the themodynamic System N, V, T, W, ρ, T Microstate - particular contiguration of your system x_i, y_i, z_i $\frac{1}{\sqrt{\frac{1}{n^{2}+1}}}\int_{\frac{1}{n-1}}^{n} N_{H_{2}0} V=1 l$ $x_{21}y_{21}z_{2}$ X_{N}, Y_{N}, Z_{N}

Ergodicity explores all accessible S tates in an time Ergodic Mypothesis systems are big enough that they're effectively ergodic Billiard Ball Robin $\begin{bmatrix} 0 & 0 \end{bmatrix}$ $\int cos \theta$

Ensemble Method It you have many copies
average a property over that ensemble Sans assurer as I system for $+$ ->10 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\langle d_{12}\rangle$ ensemble \bigcup $\mathcal{N}, \mathsf{U}, \mathsf{T}$

have been talking about continuous systems Meaning , \vec{x} , \vec{y} , \vec{z} start with discrete systems discrete number of possible States Consider a system that can be In M microstates A total copies $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ - - - I $\frac{m}{A}$

 $\begin{array}{c} 5ht \\ \hline \rightarrow \end{array} \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{array}{c} 7 \\ 7 \end{array}$ $\frac{m}{A}$ $\sqrt{3}$ N is the # In State $\sum_{i=1}^{n} N_i = A$ ・・こい $\{N_{1}\}=\{N_{1},N_{2},...,N_{m}\}$ $\{P_{1}\}=\{P_{1},\cdots P_{m}\}=\frac{N_{1}}{A},\frac{N_{2}}{A},\cdots\frac{N_{m}}{A}\}$ $L = 6$

Ensemble Average Property Yi for each $\langle y\rangle_{ersembl}=\frac{1}{m}\sum_{i=1}^{m}y_{i}P_{i}$ Contrast to a time annage $y(t_1), y(t_2), \ldots, y(t_n)$ $2y\bigg\downarrow_{t,me}=\frac{1}{N_{t}}\sum_{i=1}^{n}y(t_{i})$

Microcanonical Ensemble
Ensemble where every Micro canonical Ensemble Ensemble where every copy has \int_{0}^{∞} - isolated system the same N U $\mathbf{\hat{J}}$ all molecules follow $\int \cdot$ $2\frac{1}{N_{1}V}$ or Schrodinger equation Both case E is constant

Learned previously that entropy $S=$ kln ω is a thermodynomic potential for N, U, E systems sis maximized at equilibrium copies of this system maximize entropy \Rightarrow P_{1} , P_{2} Pm for an system

 $S=k_{g}ln\omega$ ^N copies and ^N $i \wedge s$ kk/ N_Z in state $2-$ - $W=\frac{A!}{N_c!\,N_2!\,N_3!\,N_4!\cdots N_m!}\left(\begin{array}{c} \text{multipirical} \\ \text{distribation} \end{array}\right)$ $\sum N_i=A$ $Ag\{N_i\}$ large Sterling's approximation is okay

 $ln X! \approx X|_{A}X$ A $\omega =$ $-\times$ $N_e N_2 N_3 N_4 N_4 N_6$ $S = k_{B}lnW = (A lnA - \sum_{i=1}^{m} (N lnN_{i} - M)^{2}E_{B}$ $S_{kg} = A I A - \sum_{i=1}^{M} N_i I A N_i$ $\frac{\partial S_{k_{0}}}{\partial N_{0}}=$

 $AM - E.W.M.$ $S2$ $k_{\rm s}$ $A = 2N$ $\frac{\partial S/\kappa_{s}}{\partial N_{j}} = A \frac{\partial I_{n}A}{\partial N_{j}} + \frac{\partial A}{\partial N_{j}} I_{n}A$ $\frac{\partial A}{\partial v_{j}}=l$ $-\frac{N_{0}}{N_{0}}-1.1nN_{0}$ Maxinize U N_j toget = $|+ln A - 1 - ln N_{j}|_{A}^{\omega}$
= $ln A - ln N_{j} = ln (2N_{j})$

Want to maximize all Nj $64 + 64$
but 24
d=1 $N_j = A \leq const_{\text{max}}/n+1$ Method of $2art + b$ Maximize all N_j

but $\frac{m}{2}N_j = A$ \Leftarrow canstro

dethood of Logronge Multipliers

f(x) \Leftarrow want to find Max of

with \Leftarrow constraint

ax

ax
 $\perp = f(x) - \alpha$ (canst Lagrange Multipliers $f(x) \leftarrow$ want to find max or min with a constraint $H(X) \leftarrow$ want to time
with a constrain.
Max
ormin $T = f(x) \pm = f(x) - \alpha(\cos\theta + i)$

 $S = k \ln \omega$ ω / constraint $\sum_{i=1}^{m} N_i = A \Rightarrow \left(\sum_{i=1}^{m} N_i - A \right) = 0$ $I=klnW-\alpha(\frac{M}{2}N.-A)$ $\frac{\partial T}{\partial N_g}$ = $ln A \sim ln N_g - \alpha$ = 0 forever $\propto = ln(\frac{A_{\nu}}{N_{\nu}}) \iff N_{\nu} = A e^{-\alpha}$

 $N_j^- A \epsilon^{-\alpha}$ $\sum_{i=1}^{m} N_{i} - A = 0$ canstralet $\sum_{i=1}^{n} A_i e^{-\alpha} = A \Rightarrow m A_i e^{-\alpha} = A$ e^{α} = m $\frac{1}{2}$ $\frac{1}{2}$ $\alpha = ln(m)$ $P_i = N_i = \frac{Ae^{-\alpha}}{A}$ $\frac{1}{e^{2}}=\frac{1}{m}$

Chapter 10 Canonical Ensemble a system of interest has constant NJJT isolated N,U,e overall 43 heat transfers until cach System has save T one system @ og $N = A\tilde{N}$ $V = A\tilde{V}$ $\epsilon = \frac{A}{2}\epsilon$, \tilde{V} , \tilde{V} , T

Whole system is N, V, E Maximize $S = k(n\omega)$ $const$ traints $\sum_{i=1}^{m}N_{i}=A$ $\circledS = \underbrace{\sum_{i=1}^{n} E_{i}}_{i} = \underbrace{e_{i}e_{i}e_{i} + e_{i}e_{i}e_{i} + e_{i}e_{i}e_{i}}_{i}$ Lagrange multipliers (2 constraints) $5777072(20774)8(20.2)$

Energy constraint $\boxed{\mu_1}$ $\boxed{\mu_2}$ $E_{total}=\sum_{i=1}^{M}N_{i}\mathcal{E}_{i}$ $S=KlnW-\alpha(\Sigma w,-A)$ $-B(ZU; E; -E_{f\circ h1})$ $\frac{\partial S}{\partial N_{j}}=ln(A/N_{j})-\alpha-\beta \epsilon_{j}^{\prime}=0$

 $\left(\frac{1}{N} \mathcal{N}_{ij} \right) - \alpha - \beta \mathcal{E}_{j} = 0$ $N_j = e^{-\alpha} e^{-\beta \xi} j$. $\sum_{j=1}^{m} N_{j} = A = Ae^{-\alpha} \sum_{j=1}^{m} e^{-\beta \xi_{j}}$ \int $\frac{1}{2}$ $\frac{1}{2}$ $1 = e^{-x} \sum_{j=1}^{M} e^{-\beta \epsilon}j$ $P_j = \frac{N_j}{d} = \frac{N}{e}e^{-\beta \xi}$ $e^{\alpha} = \sum_{j=1}^{m} e^{-\beta \xi} j$ $e^{-\beta \epsilon}$ / $\frac{1}{2}e^{-\beta \epsilon}$

 $p_j = e^{-\beta \epsilon_j}$ $\frac{1}{2}$ $\frac{1}{2}e^{-\beta \epsilon}j$ $d=0$ Partition function $Q=\sum_{i}e^{-\beta E_{i}}$ \uparrow \uparrow EPE is called 716 Bolzmann factor ave

for Micro Conorical Brizmann factor= $\|ieB=0$ $Q = \sum_{i=1}^{M} 8F_i \approx M$ $\langle y> = \sum_{i=1}^{m} y_{i} p_{i} = \sum_{i=1}^{m} y_{i} e^{-\beta \epsilon_{i}}/2$ $\langle \xi \rangle = \sum_{i=1}^{M} \epsilon_{i} \ell^{-\beta \epsilon_{i}}/Q$ $B = \frac{1}{k_{B}T}$

 $Q = \frac{M}{2} e^{-\beta E}$ $\frac{1}{2}$ can dernie themodynamic quartities from the partition function $\langle \epsilon \rangle = \sum_{i=1}^{m} \epsilon_{i} e^{-\beta \epsilon_{i}} / Q$ $D(\sigma)Q \rightarrow D(\sigma)Q$ $- \frac{00}{\sqrt{8}} = \sum_{i=1}^{m} \mathcal{E} \cdot e^{-8\mathcal{E}i}$ $\frac{1}{\delta} \frac{1}{\delta} = \frac{1}{\delta} \frac{1}{\delta}$

 $-\frac{3ln\theta}{2}=\sum_{i=1}^{m}c_{i}e^{-\beta t}$ $=\langle \xi \rangle$ $\frac{1}{2}$ ω $SMLG$ $\langle \ \ \xi \ \rangle$ = OS

Gibbs Entragy $S = k \ln w$ micro $S=-k_{s}\sum_{i=1}^{m}p_{i}l_{n}p_{i}$ $Z7:4:24$ $P'_{1} = e^{-\beta \epsilon_1}/\theta$) $-k_{B} \sum p_{i} [-BE_{i}-1_{A}0]$ $= k_{B} \geq \sum p_{i} \epsilon_{i} + k_{b} \wedge 0$
= $k_{B} \geq \epsilon_{0} + k_{B} \wedge 0$

 $S=k_{B}B\langle E\rangle+k_{B}ln\theta$ $T=(\frac{\partial U}{\partial S})_{V}= \frac{\partial U}{\partial S}$