Conformational Equilibrium Last time, discussed $A + B \ge G + H$ reactions, exchanging # of moles of atoms between chemical species But the same kind of analysis can be useful for biological systems Here we have non covalent interactions taking use between different States of a molecule This includes classic $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} dx$ reaction

Three is one kind of reaction scheme

\nthen simple, which is

\n
$$
A \geq B
$$

This means *print* fold ing is
\na *conperb* from between entropy
\nand *earth* up. Many proteins have
\n
$$
\Delta G \sim -10
$$
 ken/mol because of cancellation
\nof large. ΔH and $-T\Delta S$
\nThis chapter is about how to
\nmeasure and extend these quuhities
\nfrom experimental data
\nStart with Δ -state model
\n Δ
\nSo reaction is ΔG_{full}
\nSo reaction is ΔG_{full}
\nSo reach the following
\ndeanbreed
\n ΔG_{full}
\n<

Aside: $\frac{1}{\Delta G^*}$ free energy bertreer controls rate of folding Can be too high for large proteins so folding may need to be catalyzed $\frac{1}{2}$ 14)
\\ chaperone" But hou can une measure [N]/[D]. Need some spectroscopic technique that can distinguish between D&D Lets firstimagine what this could look like in general

Hence realistically we can only
evaluate
$$
k = ENI
$$
 [D]
When $I_{N} = \frac{ENI}{ED3} + EN$ is intermediate
This applies to other measurements
- FRET – can be used to infer
distances like about
- Circulor Dichroism (erample include)
- Circuitor Dichroism (erample include)
absorption of 220 nm shows
secondsy strevolve us method
, NMR – different pattern of peaks
when in nature constant K ?
So when can use use this combination
So when can use use this combination
(the use of maximum K ?
First, lets connect I_{N} , f_{N} to k_{N}

 $\frac{1}{2}v = \frac{CN}{CN} + [D]$ and $K = \frac{LN}{dV}$ $\frac{LVJF}{[VJK+LD]} = \frac{k_{A}d}{K_{A}d}$ $=$ $[$ D] k $f_{D} = \frac{1}{kt}$ $S + f_{N} + f_{D} = 1$

 $18 + 11 = 11 + 12 = 0.1 = 0.1$ $\Rightarrow k = 1/a \approx .111$ $f_{\mu} = 0.9$ = $9k + .9 = k$ \Rightarrow K=9 $\frac{1}{9}$ < K < 9 => -1n9< 1nk<1n9

$$
-2.2c ln k < 2.2
$$
 $\Delta G = -RT ln k$
\n $\Rightarrow 1.3 \ge \Delta G^{\circ} \ge -1.3$ kcal

$$
\sqrt{32062-1.3 \text{ kcal}} \text{mol}
$$
\n
$$
\frac{132062-1.3 \text{ kcal}}{mol}
$$
\n
$$
\frac{132062}{mol}
$$
\n
$$
\frac{13
$$

Typical protein kg,a 70^{3} & at room temp ! Key is to $"$ denature $\overline{\mathcal{U}}$ the protein with temperature or chemicals ^m order to " melt" the protein , and extract SH & DS fran this analysis T $\begin{array}{c} \mathcal{F}^{\mathsf{T}}\\ \mathcal{F}^{\mathsf{M}}\end{array} \begin{array}{c} \mathcal{F}^{\mathsf{M}}\\ \mathcal{F}^{\mathsf{M}}\end{array}$ temp at y_{obs} y_0 , y_1 , y_2 $T(k)$ We will see later, like a phase transition , but not sharp

How do me get Kr.12 $y_{obs} = f_{N}y_{N} + (1 - f_{N})y_{N}$
 $(y_{N} - y_{N})y_{N} + (1 - f_{N})y_{N}$ \Rightarrow $f_{N} = 400s - 9D$ partial dnep geometric, can get from plot = K_{bol} $y_{\text{N}} + \frac{1}{1 + k_{\text{P}}}$ y_{D} = $\frac{y_{D+1}}{1+k}$ = $\frac{y_{D-1}}{1+k}$ = $\frac{y_{D-1}}{1+k}$

to fit these terms $\Delta b^{\circ} = 0$ e $f_{\omega} = 0.5$ a lso

$$
<\circ
$$
 T_m = $\Delta H^{\circ}/\Delta s^{\circ}$

How steep is the toursition? Get derivative $\frac{1}{2}\int_{\gamma_{0}}\sqrt{1-\frac{1}{2}}$

Simple nodel, SH & D S'dan't dpend on T

$$
S_{k}:\rho_{1} \text{ (or } \text{completeness})
$$
\n
$$
S_{k} = \frac{S_{k} \text{ (or } \text{completeness})}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1 + e^{SS/\mu} - \frac{\Delta H}{\mu}}}
$$
\n
$$
S_{k} = \frac{1}{\sqrt{1
$$

and
$$
\frac{k^{2}}{1+k} = \frac{k}{1+k} \cdot \frac{1}{1+k}
$$

$$
50\frac{24}{27}=(y_{w}-y_{0})f_{w}f_{D}\frac{\Delta F}{RT^{2}}
$$

(Goiny back to
$$
y_{obs} = y_0 + (y_0 - y_0)) \frac{F}{1 + k}
$$

$$
26 = 2H^{\circ} - 72S^{\circ} = 2H^{\circ} - 72H^{\circ}
$$

= 2H^{\circ}(T_{m} - T)
= 2H^{\circ}(T_{m} - T)

$$
K = 2
$$

 $\begin{array}{c} \end{array}$

$$
(an fit to get Tm, BH^{\circ} \Rightarrow \Delta S^{\circ} \& \Delta G^{\circ}
$$

In reality $\big)$ better model is constant heat capacity for each steble stell $dM_{\mu} = C_{p}dT$ $H_{\mathcal{N}}=$ $H_{\mu}^{ref} + \widehat{C}_{\rho}$ (T-Tref) also for Denemed State $\Delta \overline{H} = \Delta \overline{H}_{ref} \Delta \overline{C}_{P}$ $Cr-$ Tret) re f eg ret temp at Tm C an do some far d $S = \frac{C_{P}}{4}d^{T}$ $05 = 05r + \Delta\overline{c}_{p}$ In $(1/r)$ and ye this $\Delta G = \Delta H^2 - T\Delta s$ to F