Lecture 8 - Monte Carlo Sampling Reminder: Goal of stat mech to calculate average properties $\langle 0 \rangle = \langle d\vec{x} O(\vec{x}) P(\vec{x}) \rangle$ X = { X1... × 3N, P1 ... P3N or = {x1... x3N3 if O doesn't depend on \$ and $P(\vec{x}, \vec{p}) = P(\vec{x})P(\vec{p})$ eg, @ const NVT, usully $\mathcal{H}(\vec{x},\vec{p}) = \sum_{i=1}^{2} i^{2} / m_{i} + \mathcal{H}(\vec{x})$ $P(\vec{x}) = \int d\vec{p} P(\vec{x},\vec{p}) = e^{-\beta u(\vec{x})} \int dx e^{-\beta u(x)}$

But, even if know U(x), (annot compute <0) directly for most problems, high dimension Idea: produce representative set of configurations \$\$.3 S.t. Xe distributed according to target distribution More specifically, have correct relative weights. So cg for Boltzmann distribution $P(\vec{x}_{i})/P(\vec{x}_{i}) = \frac{-\beta u(\vec{x}_{i})}{e^{-\beta u(\vec{x}_{i})} = e^{-\beta u(\vec{x}_{i})}}$

How can we de this? DGoing to generate a "Markov Chain" This means a set of cfgs $\vec{X}_1 \rightarrow \vec{X}_2 \rightarrow \vec{X}_3 \rightarrow \vec{X}_T$ made by some rule where P(xt >xt) only depends on what \vec{x}_{1} is $(not \vec{x}_{1}, \vec{x}_{2} \dots \vec{x}_{1-2})$ @ It can be proven that if our rule satisfies detailed between the sampling will connege detailed balance - each microscopic Step follows equilibrium role $P(x_{t}) P(x_{t} \rightarrow x_{t+1}) = P(x_{t+1}) R_{t+1} \rightarrow x_{t}$

We do this by choosing
the rule
$$P(x_t \rightarrow x_{t+1})$$

This is orchuelly made of fewo
parts:
 $P(x_{t-3} \times_{t+1}) = P_{qen}(x_{t} \neg x_{e+1}) \cdot P_{acc}(x_{t} \neg x_{e+1}) \cdot P_{acc}(x_{t} \neg x_{e+1})$
 $P(x_{t-3} \times_{t+1}) = P_{qen}(x_{t} \neg x_{e+1}) \cdot P_{acc}(x_{t} \rightarrow x_{e+1}) \cdot P_{acc}(x_{t} \rightarrow x_{e+1})$
 $P(x)P_{qen}(x \rightarrow y)P_{acc}(x \rightarrow y) = P(y)P_{qen}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x)$
 $P(x)P_{qen}(x \rightarrow y) = P(y)P_{qen}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x)$
 $P(x)P_{qen}(x \rightarrow y) = P(y)P_{qen}(x \rightarrow y) \cdot P_{acc}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x)$
 $P(x)P_{qen}(x \rightarrow y) = P(y)P_{qen}(x \rightarrow y) \cdot P_{acc}(y \rightarrow x) \cdot P_{acc}(y \rightarrow x)$

$$\alpha: r(y \rightarrow x) = \frac{1}{r(x \rightarrow y)} c$$

$$\frac{P_{acc}(x \rightarrow y)}{P_{acc}(y \rightarrow x)} = \frac{1}{[\frac{1}{1-(x \rightarrow y)}]} = r(x \rightarrow y)$$

b: $r(y \rightarrow x) = 1$
$$\frac{P_{acc}(x \rightarrow y)}{P_{acc}(x \rightarrow y)} = r(y \rightarrow x)$$

Algorithm! Start at Xe () Propose Xtr, w/prob Zger(x+>Xtr) yer rondom # r E [U,1] (2) if $r < Pace (K_{2} \times k_{1})$: (2) move to X_{k+1} if not: duplicate X to ic Xtoti=Xto 3 bact to 1 Lefs look at r(x->y) r(x>y) = Pgen(y>x, P(y) Pgen(x>y) P(x) Choose Pger 8 P(x) is taget distr

So for Methapolis $P(y)/p(x) = e^{\beta \Delta u_{xy}}$ What about this flyen Usually choose figer to be Symmetric St Pger(x->y) caul Pyer(y->x)

In this case Matapalis Mesimplifies
te Pace = Min [1, e-BAN]
Accept always if every goesdan
Accept sometimes if every goes up
True mone rule to get
accept prob ~ 0.25-0.5
tonde off between efficiency and
exploration, eg size of E
bigger more, more likely to
Increase Énore

Reminder: even if initial cfg not good, will eventually sample from target P(if ergodic)

Do we have to use metropolis? Three are other rules: Eg! Glauber rule $P_{acc}(x,y) = \frac{1}{2} \left[1 - tenh(\frac{\beta \Delta \varepsilon_{y}}{2}) \right]$ - e BAE xy/2 e phyle te FDE/2 why? 12, Ey- Ex Dejx= Ex- ey= - AExy $= e^{\beta \Delta E_{xy}}$ Pace (x-3y) So Pacely->x) gluber emetrop

Why MC& why Not! 1) Easy Ocon choose smart Mc mores which sample spice much fashr Why not! Only static properties right (asully) (2) Usually only small nover accepted Egin liquid, more 1 mc not all at once as in MD