Lecture 7 - Intro to sompling Reminder: goal of stat meth Is to compute average observables $\langle 0 \rangle$ ensurble = $\int dX O(X) P(x)$ If can't NUT, P(x) = E .
BNG) r)
/Z some problems can solve exactly, put most not. Will talk about how to solve numerically First: finish canonical ensemble A = kgT InZ $P = -\partial^{A}f_{W}$ etc Also knew $\mathbf{\mathcal{E}}$ = - $\partial^2 \vec{r}$

firsz finish ideal gas: $Q = \frac{1}{N!} (\frac{V}{\Lambda^3})^{N} = \frac{1}{N!}v^{N}(2rmk_5T)^{3/2N}$ = $\mathcal{\mathcal{P}}$ - % ^N . stuff $E = -\frac{2h}{\partial \beta} = \frac{3}{2}N \frac{\partial ln \beta}{\partial \beta} = \frac{3}{2}Nk_{5}T V$ one more thermo quantity of Importance! $C = \frac{\partial E}{\partial T} \qquad C_V = \left(\frac{\partial E}{\partial T}\right)_V \qquad C_P = \left|\frac{\partial E}{\partial T}\right|_P$ Idealgas! Cu= 3 Nks In general, C = $\frac{12}{100}$ = $\frac{12}{100}$ $\frac{12}{100}$ = $\frac{12}{100}$ $\frac{12}{100}$ = $\frac{12}{100}$ $\ddot{}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$

Now, for NVT $\frac{1}{240}62 - 3\frac{1}{240}$ $C_{V} = -k_{b} \rho^{2} \frac{\partial E}{\partial \beta}$ $= k_{B} \beta^{2} \frac{\partial}{\partial \beta} \left[\frac{1}{3} \frac{\partial^{2}}{\partial \beta} \right]$ $= k_0 \beta^2 \left[-\frac{1}{2} \frac{\partial^2}{\partial \beta} \frac{\partial^2}{\partial \beta} + \frac{1}{2} \frac{\partial^2 \dot{\zeta}}{\partial \dot{\zeta}^2} \right]$ = $k_{B}e^{2}\int \langle e^{2}\rangle - \langle e^{3}\rangle^{2} dx$ $=$ $k_{B}\beta^{2}$ $Var(\ell)$ $Z = \int dxe^{-\beta H(x)}$, $\frac{32}{\delta \beta^2} = \int d\beta H(x)e^{-\beta H(x)}$ $\frac{\partial \mathcal{E}}{\partial T} = \frac{1}{\kappa \rho T^2}Var(\mathcal{E}) - \frac{1}{\kappa}$

Example Of fixe tuestion dissignetion theorem: fluctuations @ cg
prop to how quatity relaxators (Dasuger Regnession) What does vor(E) non physically? $rac{1}{2}$ $\overline{}$ Energy goves in Reet of bath How big is fluc rektive to E? $\sigma_{\mathcal{E}} = \sqrt{56}$ a $\sqrt{64}$ a $\frac{1}{N}$ b/c $\frac{c_{\nu}\alpha\mu}{\mathcal{E}\alpha\mu}$

These energy fluctuations are what allow chemical systems to overcane banners and undry. reactions . But how do we calculate properties if we can't exp licitly $\frac{1}{9}$ ut 7? Consider the problem of computing $\langle 0 \rangle$ = 19x OCt LCt first , lets consider that most Observables may only depend on position $\langle 0 \rangle$ = σ , σ *i*, σ ², σ ₂, σ ₁ σ ₁ σ ₂)

Then $\langle 0 \rangle = \frac{\text{const}}{2} \cdot \sqrt{d\vec{x}e^{-\beta ML\vec{v}d}} O(\vec{x})$ CardePine contre pos. E= Sarc^{-puch} $\langle 0 \rangle = \int d\vec{x} O(\vec{x}) e^{-\beta U(\vec{x})}$ $\frac{7}{7} = const$ $\frac{2}{7}$ Now consider 16 problem $\frac{1}{\sqrt{\frac{1}{15}R}} \times \frac{1}{\sqrt{\frac{1}{15}R}}$ Can compute Co> numerically "by quad ratme" ie $\{0\} \approx \sum_{j=1}^{k} O(x_j) P(x_j) \Delta x$

Seems great, which the probe

\nFor each dimension:

\n# points =
$$
\frac{1}{2}x
$$

\nSo For d dimensions

\nIt = $\left(\frac{1}{2}x\right)^d = e^{d \ln(1/2x)}$

\nexpmarially large (d=3) gets a graph in the image.

\nLet $f(x) = \frac{1}{2} \int_{\frac{1}{2}}^{x} f(x) dx$

\nLet $f(x) = \frac{1}{2} \int_{\frac{1}{2}}^{x} f(x) dx$

\nTherefore, $f(x) = \frac{1}{2} \int_{\frac{1}{2}}^{x} f(x) dx$

\nOne way to do this is "Molecular Dynamics", mimic Newton+ten?

First discuss Mork Carlo guvert a "Marton Chris" $x_f \rightarrow x_{t+1}$, depends only on connect State If this satisfies "detailed blue" $P(x_t) P(x_t \rightarrow x_{t+1}) = P(x_{t+1}) P(x_{t+1} \rightarrow x_{t})$ then can be grown that Chrin Commyes 5.7. X~P(x)