Lecture 4- Therne Review

Last time: Microcanonier partition $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ ($\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ $c \log d$ heat flows Ny_1 \overline{c} ansteat

• Asserted that Cmicrocaronical) $S=kg$ In $R(M, U, E)$ thermo review ① First law: conservation of energy . Energy isn't created or destroyed what is the system we're studying

another Shikment:

\nfor a system

\ncharge
$$
\epsilon_{s} =
$$
 heat flows in 258 km – work done by system

\nChenye $\epsilon_{surr} = -$ Chenye ϵ_{syskm}

\nChenye $\epsilon_{surr} = -$ Chenye ϵ_{syskm}

\nLet $\epsilon_{syskm} = \frac{1}{1 - \frac{1}{$

Reminder: "infintessible" (eg dE) response, te ce ting change in f(x) is a function of and the set $f(x + dx) \approx f(x) + dx \frac{df}{dx} + \frac{1}{2}ar^2f^2$ $df = lim_{\Delta x \to dx} f(x + \Delta x) - f(x) = (dR)dx$

 ω hat is d f $f'(x,y)$ $f(x+bx, y+dy) = f(x) + 4x\frac{dt}{dx}\Big|y$
+ $4y\Big(\frac{3f}{5y}\Big)_{x}$ + - $df = \left(\frac{\partial f}{\partial x}\right)_y dx + \left(\frac{\partial f}{\partial y}\right)_x dy$ $(t \cdots)$
connected to chain rule, eg $\frac{df(x,y)}{dt} = \left(\frac{df}{dx}\right)\left(\frac{dx}{dx}\right) + \left(\frac{df}{dy}\right)\left(\frac{df}{dx}\right)$

Themodynamics - want to know
Change in f along a thermolynnic
path $\Delta f = f(x_2, y_1) - f(x_1, y_1)$ $=\int_{x_{1}\rightarrow x_{2}}^{x_{1}\rightarrow x_{2}} df$ $(\begin{array}{c} e_5 \\ g_1 v, \tau \end{array})$

 $dE = 58 \mathbf{\hat{S}}$ ယ $e^{\frac{1}{2}x}$ Energy is a " state variable" heat , work are not $\Delta \epsilon$ = $\int_{\rho chl}$ $S_{g} - S_{w}$ d : fferent kinds of work $\begin{pmatrix} 2u \\ h \\ h \end{pmatrix}$ chemical $d\omega = \int_{\rho\downarrow\mu} E \cdot d\tau$ dw= Fdr

 $dw = -\left(\frac{\partial u}{\partial r}\right)dr$ cres y $E(A,B,C)$ (think $N,0,7$) $dE = \left(\frac{\partial E}{\partial A}\right)dA + \left(\frac{\partial E}{\partial B}\right)dB + \left(\frac{\partial E}{\partial C}\right)dC$ $d\mathcal{E} = \mathcal{S}e - \mathcal{S}\omega$ $|st|$ cew $\frac{1}{\sqrt{2\pi i}}\int_{\frac{1}{3}x^{2}} 1 dx = \sum_{n=1}^{\infty} \frac{1}{(3x^{2})} dx$

Real example $\iota^{chemical}$ - W= -Pdv + µdN ② 2nd law : heat is a not a stale function exist a quantity $dS=\frac{\delta Q}{T}$ • state Anchor , **ี**
(เ entropy " $-k$
- R
- R $S(b)-S(a) =$ $\int \frac{5a}{T}$ vn'ts of a-sb (e)

 $dE = Sg - S\omega$
= $Sg + \sum_{i}(\frac{\partial E}{\partial \lambda_{i}})d\lambda_{i}$ divide $\frac{1}{T}dE = \frac{Sg}{T} + \frac{1}{T}\sum_{i}^{S}(\frac{S}{S_{i}})d\lambda$ \boldsymbol{c} $dS = \frac{1}{T} dE - \frac{1}{T} \sum_{i} \left(\frac{\partial E}{\partial \lambda_{i}} \right) d\lambda_{i}$

 $dS = \frac{1}{T} dE - \frac{1}{T} \sum_{i} \left(\frac{\partial E}{\partial l_{i}} \right) l \lambda_{i}$ In microcanonical ensemble S depends only on $\mu_1\nu_2$ Infindesibles - chain mule .. \int $S(N,U,E)=0$ $dS = \left(\frac{\partial S}{\partial N}\right)dN + \left(\frac{\partial S}{\partial V}\right)dV + \left(\frac{\partial S}{\partial \epsilon}\right)d\epsilon$ $\Rightarrow \left(\frac{25}{26}\right)_{N,V} = \frac{1}{T}$

 $dS = \left(\frac{\partial S}{\partial N}\right)dN + \left(\frac{\partial S}{\partial V}\right)dV + \left(\frac{\partial S}{\partial \epsilon}\right)d\epsilon$ $dS = \frac{1}{T} dE - \frac{1}{T} \left(\frac{\partial E}{\partial N} \right) dN - \frac{1}{T} \left(\frac{\partial E}{\partial U} \right) dV$ $\Rightarrow \left(\frac{\partial S}{\partial V}\right)_U, \epsilon = \frac{\partial V}{\partial V}$ $\left(\frac{2s}{50}\right) = \tau \frac{P}{T}$

• IS 20 for any process ☐ 5=0 for a reversible path Includes isolated systems universe -_ isolated system constant energy

Can think of S is [-S] **CR "** thermodynamic potential " for nicroononical ensemble - s 201
 01 ical essen
 $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ N, V, E entropy will maximize us we approach equilibrium Next time : ^s for ideal gas ideal gas law from S . . .