Lecture 3: Micro canonical, Pt2

Last time: Isolated system, assure moleou les / particles follow Rewton's laws $\begin{bmatrix} . & . & . \\ . & . & . \\ . & . & . \\ . & . & . \end{bmatrix}$ Conserve $\begin{matrix} . & . & . \\ . & . & . \\ . & . & . \\ . & . & . \end{matrix}$ Tutine
Class How many states? Said $\int_{0}^{\infty} \frac{f(x,y)}{f(x,y)} dx = C \int_{0}^{\infty} d\vec{x} \quad S(\vec{x}(x)-\epsilon)$
actually not =, constant
prefactor later. if indisting $\propto \frac{1}{N!}$

What is probability of a nicrostete? $P(x) = \begin{cases} \frac{1}{2(u,v,e)} & \text{if } u \neq 0 \\ 0 & \text{if } u = 0 \end{cases}$ $= 1$ really $P(x) = C S (\mathcal{H}(x) - \epsilon)$
Equal priority $JZ(N, V, \epsilon)$ $\int dx P(x) = \frac{C}{\sqrt{2}(\mu_1 \nu_2 \epsilon)} \int dx S(\mu_1 \nu_2 \epsilon)$ Ewill compile 'for idel gas later]
Said a system will follow a $X(f_1) \rightarrow X(f_2) \rightarrow \cdots X(f_n)$ from

 $\langle A \rangle_{\text{time}} = \frac{1}{N} \sum_{i=1}^{N} A(\chi_{C^+i}))$ $\{X(t_i)\}$ are representative
Samples of $P(X)$ if systen is ergodic ie. all states accessible If so $\langle A \rangle_k^{t\geq 0} \langle A \rangle_{\text{e-s}}$
assume = $\int dx P(x)A(x)$ Note-no P(x) reeded in time awage because each X comes up with correct poob already

Return to main point of stat mech which is to compute macro quantities from averages of micro start to explore connection w/ thermodynamics, which we will recap more later thermodynamics is the study of move ment of heat/ensy and that movement of indicate that 2 systems $N_{11}v_{11}E_{1}$ $N_{21}v_{21}E_{2}$ so Energy can flow

Now E still concerned but
\n
$$
E_{10} + E_{2}
$$
 Is cashent the
\n E_{1} could be O $\Leftrightarrow E_{10}$
\nand samt for $E_{2,50}$ what value
\ndoes it take? can ask what
\nValue is most probable.
\nile maximize $\sum (N_{01}V_{15}E_{10}+)$
\nwith is $\sqrt{?}$.
\n $\int L[N_{11}V_{101},E_{10}+)=\int L(N_{1},V_{11}E_{1}) \times$
\n $\int L(N_{21}V_{21},E_{2})$
\nmaximize, find $\frac{dR}{dE_{1}}=0$

Instead of le, muximie loge, $log SL(N, V, G) = log R(N_1, V_1, E_1)$ $+ \log 2C(N_1, v_7, \epsilon_2)$ $0 = \frac{\partial \log f(L\mu_1, \nu_1, \varepsilon)}{\partial \varepsilon_1} + \frac{\partial \log R\mu_2 \nu_3 \varepsilon_2}{\partial \varepsilon_2}$ $E = E_1 + E_2 \Rightarrow E_1 = E - E_2$ $\frac{\partial X}{\partial \epsilon_1} = \frac{\partial X}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial \epsilon_2} = -\frac{\partial X}{\partial \epsilon_1}$ $\Rightarrow \frac{\partial logIL(N_{1},U_{1},E_{1})}{\partial E_{1}} = \frac{\partial logIL(X_{1},X_{2},E_{2})}{\partial E_{1}}$ [$C\bullet\bullet s$ + N_1, V_1, N_2, V_3] Thermor heat flows until temp
ervel, so maybe related to thus

Will see from themo thet $f=\left(\frac{\partial S}{\partial s}\right)_{s,v}$ so this motivates us to associate $S(N_1v, \epsilon) = k_6 \log \ell (Mv, \epsilon)$ in which case, ① ² bodies at equilibrium equ cqualize $\frac{1}{kg_0}$ =p ② Entropy is maximized for a closed system at equilibrium Why this definition of entropy? It has one key properly , extensivily

An extensive quantity is are that scales with the size of the system N , V , E, S ← examples Intensive does not depart as Sy stem siz $\sum_{i=1}^{n}$ Divide extensive quantities to get intensive one, eg $p = Mv$ Why ^S extensive duplicate system $\left[\overline{\mu_{y}v_{k}}\right] \left[\mu_{y}v_{k}\right]$ $\sum = \sum R_{z}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $if dotbb9$ $S_{\text{tot}} = 2S_{1}$