Lecture II - Interacting gasses & liquids, pt) Caravical Ensemble, cardt N, U, T $P(\vec{g}, \vec{\rho}) = c^{-\beta H(\vec{g}, \rho)} \sqrt{d_{\vec{f}}^2 \int d\vec{\rho}} e^{-\beta H(\vec{g}, \vec{g})}$

 $\mathcal{H}(z_{1}, z_{2}, z_{3}) = \sum \frac{\rho_{1}^{2}}{2m_{1}^{2}} + U(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ ideel jes
just this

U can be positive ou negative Low energy "good" system can
condinse: if U sufficiently negative

Renewber A minirel @ equilibriun and $A = E-TS, 720$

$$
P(q_{i-1} \notin n) = \frac{1}{2} \int d\zeta^{2} S(q_{i-1} \cdot s) S(q_{i-2} \cdot ... \cdot e^{p_{d(\zeta)})}
$$
\n
$$
= \left\langle \int_{i=1}^{n} S(q_{i-1} \cdot s) P_{\zeta^{i},q_{i-1} \cdot ...} \cdot e^{p_{d(\zeta^{i})}}
$$
\n
$$
= \left\langle \int_{i=1}^{n} S(q_{i-1} \cdot s) P_{\zeta^{i},q_{i-1} \cdot ...} \cdot e^{p_{d(\zeta^{i})}}
$$
\n
$$
S_{\omega}
$$
\n<

 \mathbf{C}

Now g²²¹, what we vesually care about $g^{(2)}(\vec{r},\vec{r}) = \frac{N(N-1)}{P^2} \leq S(g-f, 1S(f,-\vec{r}))$ Looks like depends an 2 positions, sur
Ca 14 depend where are look so $R = \frac{1}{2} (g, \mu g)$ $r = g^{3} - g$ center coardintes
 $\zeta_1 = \vec{\mu} - \frac{1}{2}\vec{r}^2$ $\zeta_2 = \vec{\mu} + \frac{1}{2}\vec{r}^2$ $d\vec{q}$, $d\vec{q}$ = $d\vec{r}d\vec{R}$ $\begin{vmatrix} \frac{\partial \varphi}{\partial r} & \frac{\partial \varphi}{\partial r} \\ \frac{\partial \varphi}{\partial r} & \frac{\partial \varphi}{\partial r} \end{vmatrix}$ = $d\vec{r}d\vec{R}$ | - $\frac{1}{2}$ | $\begin{vmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{vmatrix}$ $= 9227$ 50 $\int d\zeta, d\zeta, \int_{0}^{u_{1}} (\zeta, q_{x}) = \int d\zeta ds \int_{0}^{u_{1}} (\dot{\vec{R}}, \dot{\vec{r}})$ $g^{(L)}(c, k) = \frac{N(N-1)}{S^2 \ell} \int dg_3 - d\ell M e^{-\frac{k}{2}r, kr\ell k, -1}$ α cat de on $\vec{\alpha}$ detine 9 $(\vec{r})^2 \vec{r} \sqrt{\vec{R}} \vec{q}^2 (\vec{r}, \vec{R})$

So
$$
g(\vec{r}) = \frac{N-1}{D} \langle \vec{S}(\vec{r} - \vec{r}^2) \rangle
$$

\nHow likely are $y \cdot \sqrt{\tan a} \tan b$

\n $Q \sin b$ is $\tan b$ and $Q \sin b$

\n $Q \cos b$ is $\tan b$ and $Q \sin b$

\nLet $p \cdot b$ does n^2 by $dy \cdot \tan b$ are $q \cdot \sin b$

\nIf $p \cdot b$ does n^2 by $dy \cdot \tan b$ are $q \cdot \sin b$

\nwhere $Q \sin b$ is $q \cdot \tan b$ is $q \cdot \tan b$ is $q \cdot \tan b$

\nand $Q \cdot \tan b$ is $q \cdot \tan b$

\nand $Q \cdot \tan b$ is $q \cdot \tan b$

So
$$
\int d\theta (d\phi - g(\vec{r})) d\vec{r} = 4\pi r^3 dr g(r)
$$

\n
$$
= \int g(r) dr = \frac{(N-1)}{4\pi \rho} \int e^{2} 5(r-r^2) dr
$$
\n
$$
= \int g(r) \frac{4\pi \rho}{r^2} \int e^{2} (5(r-r^2) dr)
$$

In the
\n
$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} 4\pi r^{2} g(c) dr = r-1 \approx N
$$

\nHree
\n $\int_{0}^{\infty} \int_{0}^{\infty} r^{2} g(c) dr = \int_{0}^{\infty} r^{2} c^{2} dr$
\n $\int_{0}^{\infty} r^{2} g(c) dr = \int_{0}^{\infty} r^{2} s dr$

In reality, every
$$
U
$$
 depends an all abm
\npositive U (y, y, ..., z, y it is
\n $u^2 + v^3 + v^2 = \sum_{i=1}^{n} uv_{i}$
\n $\begin{pmatrix} w \\ y \end{pmatrix} = \sum_{i=1}^{n} uv_{i}$
\n $\begin{pmatrix} w \\ y \end{pmatrix} = \sum_{i=1}^{n} uv_{i}$
\nSo $g(x)$ will be closely canceled to
\n $uv^2 + uv^2 = 0$