Lecture 11 - Interacting gasses & liquids, 11 Cananical Ensemble, ranst N, V, T $P(\vec{q}, \vec{p}) = e^{-\beta \mathcal{H}(q, p)} \int d\vec{q} \int d\vec{p} e^{-\beta \mathcal{H}(\vec{p}, \vec{q})} \int d\vec{q} \int d\vec{p} e^{-\beta \mathcal{H}(\vec{p}, \vec{q})}$

H(q, p) = ZPi/2m; + U(q, q, ... q) ideel gas just this

U can be positive or reputive Low energy "good", system can conduse if U sufficiently negative

Renember A minimized @ equilibrium and A= E-TS, T>0

g(s) snys Mintine prob of Ending
at some distance. Can also
depend on angles, but often anonged to
just distance. Also can be multipletype
In practice, whet's this quartity
Stand on purficle & histogram #Odists
Actually, blown r and rtor
ideal ges, # in sphere
$$\frac{4}{3}\pi s^{3}p$$

in shell = $\frac{4}{3}\pi (r+br)^{2}p - \frac{4}{3}\pi r^{2}p$
 $\frac{4}{3}\pi (r^{3}+30rr^{2}+3br^{2}r+0r^{2}) - \frac{4}{3}\pi r^{2}p$
 $= 4\pi r^{2}0r + O(0r^{2}) \approx 4\pi r^{2}0r$
so $gri = \frac{hr^{3}}{4nr^{2}0r}$ for numerics
 $\rightarrow 1$ for here r

$$P(q_{i}...,q_{n}) = \frac{1}{2} \int dq_{2}^{2N} S(q_{1}-q_{1}') S(q_{2}-q_{2}')...e^{puls^{2}}$$

$$= \langle f(S(q_{1}-q_{1}')g_{1}',g_{1}',-q_{n}'')$$
Thermal ang of # weys this an appear
But don't care which me is not
those pos so define
$$D^{(n)}(q_{1}...,q_{n}) = \frac{N!}{(M-n)!} P(q_{1}...q_{n})$$
and $q_{1}^{(n)}(q_{1}...q_{n}) = \frac{p^{(n)}}{(M-n)!} D^{n}, D^{-N/V}$
for convenient normalization (next)
will one about simple aper
$$\int dq_{1}^{(n)} P^{(n)}(q_{1}') = \int b/c probability$$
Put iso hopse so $P^{(n)}(q_{1}') = const \Rightarrow P^{(n)} = \frac{1}{V}$

$$p^{(n)} = N p^{(n)} = N/V \quad (here alling p)$$

$$@ g^{(n)} = 1 \quad !$$

Now g⁽²¹⁾, what we resulty care about $q^{(2)}(\hat{q};\hat{q};) = \frac{N(N-1)}{(p^2)} \leq \delta(\hat{q},\hat{q};1S(\hat{q},\hat{q};)) = \frac{N(N-1)}{(p^2)} \leq \delta(\hat{q},\hat{q};1S(\hat{q},\hat{q};)) \leq \delta(\hat{q},\hat{q};1S(\hat{q},\hat{q};))$ Looks like depends an 2 positions, bot Ca't depend where we look so $R = \frac{1}{2} \left(q_1 + q_2 \right) \qquad r = \tilde{q}_1 - \tilde{q}_1$ center coordinalle $q_1 = \vec{R} - \frac{1}{2}\vec{r}$ $q_2 = \vec{R} + \frac{1}{2}\vec{r}$ $d\vec{q}_{1} d\vec{r}_{1} = d\vec{r} d\vec{r} \left| \begin{array}{c} \partial \vec{r}_{1} \\ \partial \vec{r}_{1} \\ \partial \vec{q}_{2} \\ \partial \vec{q}_{2} \\ \partial \vec{r}_{1} \\ \partial \vec{q}_{2} \\ \partial \vec{r}_{2} \\$ = 7595 50 $\int dq_i dq_i g(\dot{q}_i q_i) = \int dl ds g'(\dot{\vec{r}}, \vec{r})$ $g^{(l)}(r,R) = \frac{N(N-1)}{p^2 z} \int dq_{z} \dots dz_{N} \mathcal{C}$ c ca't de on R define g $(\vec{r}) = \frac{1}{V} d\vec{k} g^{(e)}(\vec{r}, \vec{k})$

So
$$g(\vec{r}) = \frac{N-r}{p} \langle S(\vec{r} - \vec{r}) \rangle \vec{r}$$

(How likely are you to find a parkicle
 \mathcal{Q} displacement \vec{r} from a me,
centered on a molecule \mathcal{Q} orisin
If prob doesn't depud on angle then
Spherical coordinately integrate
angles to $\frac{M}{r}r^{2}\delta r$ as jacobian

So
$$\int de \int de g(r) dr' = 4\pi r^{2} dr g(r)$$

=) $\int g(r) dr = \frac{(N-1)}{4\pi p} r^{2} \frac{\zeta S(r-r')}{2} \int dq'' \int dr c \frac{Fu(r, g_{S} \dots g_{n})}{\int dq''} \int dr c \frac{Fu(r, g_{S} \dots g_{n})}{\int dq''}$

In reality, every
$$\mathcal{U}$$
 depends an ablatom
positions, In approximation, can say it is
provide a $\mathcal{U}(g_1, g_2..., g_n) = \sum_{i>j} \mathcal{U}(r_{ij})$
 $\binom{N}{2} \ge \frac{N(N-1)}{2}$ combinations of distances
So ger) will be closely connected to
what $\mathcal{U}(r)$ is