Lecture 10 -Canonical Sampling F_{\cdot} rst, finish MD, micro canonical sampling Id a : Hare $UL(X)$, $F=-T_{u}=mc$ $\alpha = \frac{d\mathbf{x}}{dt^2}$ = - $\frac{\sqrt{u}}{m}$ Do by taylor expansion $\int_0^{\infty} 9 f(t+\Delta t) \approx 964 + \Delta t \text{ with } t \frac{1}{2} \Delta t^2 \text{ at } t$ could also do ω_{α} (t- Δt) \approx $g(r)$ -Dt v(t) $t\frac{1}{2}\Delta t^{2}$ $a($ f add $q(t + bt) = 2q(t) - q(t - \Delta t) + (\Delta t)^{2} \alpha(t)$ store current & precious position, compute alt) Store current a piece: p
compute $vCH = 8 \frac{(1+8t)+g(1-8t)}{2.0t}$ if needed π is Verlet algorithm (1967)

Carapt and four scheme by considering rows?

\n
$$
q(t + \Delta t) \approx q(t) - \Delta t \text{ v(t + \Delta t) + \frac{\Delta t^{2}}{2} \text{ a(t + \Delta t)}
$$
\nBefore

\n
$$
q(t + \Delta t) \approx q(t) + \text{ v(t)} \Delta t + \frac{\Delta t^{2}}{2} \text{ a(t)}
$$
\n
$$
q(t + \Delta t) \approx q(t) + \text{ v(t)} \Delta t + \frac{\Delta t^{2}}{2} \text{ a(t)}
$$
\nConbinomial

\n
$$
v(t + \Delta t) = v(t) + \frac{1}{2} \Delta t \left[c_1(t) + a(t + \Delta t) \right]
$$
\nNow after the these, velocity work

\n
$$
S_{\text{tave}} = q e^{-\Delta t}
$$
\nwhere $q e$ is

\n
$$
v(t) = \frac{1}{2} \Delta t \left[c_1(t) + a(t + \Delta t) \right]
$$
\n
$$
v(t + \Delta t) = v(t) + \frac{1}{2} \Delta t \left[c_1(t) + a(t + \Delta t) \right]
$$
\n
$$
v(t + \Delta t) = \frac{1}{2} \Delta t \left[c_1(t) + a(t + \Delta t) \right]
$$
\n
$$
v(t + \Delta t) = \frac{1}{2} \Delta t \left[c_1(t) + a(t + \Delta t) \right]
$$

from our fund results last fine $[$ See Fuckerman 3,81]

said $A(f) = e^{i \cancel{x} f} A(0)$ where $-iJA = 5H, A5$ ski La 3.10 $= \sum_{i=1}^{N} \frac{\partial M}{\partial \theta^{i}} \frac{\partial A}{\partial \theta^{i}} - \frac{\partial M}{\partial \theta^{i}} \frac{\partial A}{\partial \theta^{i}}$ Lets corit for I particle in 1d for sinplicity $y = y_p + y_q$ $\frac{6}{96}$ = $\frac{34}{96}$ $\frac{6}{7}$ + $\frac{37}{7}$ = $\frac{37}{7}$ + $\frac{3}{7}$ $\mathcal{H} = \frac{p^2}{2n} + U(g)$ If $\frac{6}{36}v = \frac{6}{36}a\frac{4}{36} = \frac{9}{36}b$
 $\frac{6}{36}a = 1 = 9b$ $=$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $=$ $\frac{1}{2}$ $\int_{S_{0}}^{t} e^{i\theta t} = \left[e^{i\theta p \frac{t}{2p}} e^{i\theta p \frac{t}{p}} e^{-i\theta p \frac{t}{2p}} \right]^{2} + O(2Af^{3})$ Thir $0(t \Delta t^2)$ I_{one} splitting] let $t/p = \Delta t$ \approx $\left[\begin{array}{ccc} a & b & c \\ c & b & c \end{array} \right]$ $\frac{a}{2}$ $\frac{b}{2}$ $\frac{c}{2}$ $\frac{a}{2}$ $\frac{a}{2}$ $\frac{b}{2}$ $\frac{c}{2}$

$$
\begin{aligned}\n\mathcal{L} & \mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] \\
\mathcal{L} & \mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} + \mathcal{L}^{(0)} \frac{dt}{t} \right] \\
\mathcal{L} & \mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} \right] = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \quad \text{and} \\
\mathcal{L} \left[\int_{0}^{\infty} \mathcal{L}^{(0)} + \mathcal{L}^{(0)} \frac{dt}{t} \right] & = 7 \
$$

Can let us derive more interesting sherres

Do periodically

② Sample ⁰ 's from Boltzmann distribution Lose inertia! But full ^V distribution is correct, not just mean ^③ Do this, but just for ^a single particle randomly, as if colliding with Katy Andersen thermostat Better schemes ! Langevin Dynamics : Apply random fences as if there is a temp bath

later in sin

Other good idea: $\left[\hat{r} - \frac{\partial N}{\partial q} \hat{r} - \frac{\partial N}{\partial R} \right]$ Microcananical sampling but for ^a different , " extended " ensemble . Nose' [1983,1984] , checks if KE too high or low & con tinuously rescales $H_N = \sum_{i=1}^{N} \frac{Y_i}{2ms^2} + U(g_i) + \frac{1}{2} + g k_i h s$ I y
Scales KE orts has ans rescales Q : determines timescale of rescaling remires proces ' \int $\begin{bmatrix} \dot{r}, \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{\partial H}{\partial r} \end{bmatrix}$ why? $[N^2\}/[3] - [2] - [13] - [34]$ $=$ $[3]$ $=$ $[6]$ $[Q] = [3^{23}]/[3]$ so [Ps]:[Nt]

22N+2 dimensions, S alwys
positive have to find g to give consisted also, cent $\rho = \rho'$ s $\int d\rho'' d\omega$ $\text{SL}(N,V,E) = \int d^{2}v \int d^{2}v \int ds \int d\rho$ $S(H_{pys}(p, q) + 15^{2} + 9k\pi kS - E)$ where is $f(s) = 0$? $\boxed{\text{Tulumh}}$ $9kgrln S_{0} = E-N-S_{0}^{2}$ $S_0 = C \frac{1}{g k g T} [H + B^{2} \gamma_{\theta} - \epsilon]$ $S(f(s))z S(s-s)/|\frac{d\ell}{ds}|_{s}$

 $\frac{df}{ds}\left|=\frac{gkgT}{s}\right|_{s_{0}}=g\frac{kgT}{s_{0}}$ $=9k_{s}\sqrt{e^{t}8k_{s}\left(H+\beta Z_{0}\cdot\epsilon\right)}$

 $\Omega = \int dP' \int d\theta' \oint ds' \int ds \int d\rho_s s^{d\omega}$ $\frac{5(5-5)}{9k_{8}T}$ $\frac{1}{2}$ $\frac{1}{9}$ $\frac{1}{9}$ $\left[H + B^{2}/2 - \epsilon \right]$ $=\int d^{N}\int d^{N}\int d^{N}\phi^{(N)}$ - $\int d^{N}\int d^{N}\phi^{(N)}$ - $\int d^{N}\phi^{(N+1)}$

Now, let g = dNH $J2 = \int dp \int dq^2 d\mu \int d\phi$ GUANIET CPE PM -BPS²/20

= $e^{\beta \theta} \sqrt{2\pi \epsilon_5 t} Q \int d\rho d\rho d\theta e^{\mu \rho}$ α $\mathcal{H}(\mu,\nu,T)$

What are the dynamics? $\dot{q}_{i} = \frac{d\mathcal{U}}{d\tilde{p}_{i}} = \frac{\tilde{p}_{i}}{m_{i}s^{2}}$ $\widetilde{\beta}$: = $-\frac{\partial H_{\nu}}{\partial \rho_{i}} = -\frac{\partial L}{\partial \rho_{i}} = F_{i}$ $S = \frac{\partial H}{\partial \rho_s} = P_s / Q$ $9s = -\frac{\partial H}{\partial s} = \sum \frac{\tilde{p}_{i}^{2}}{m c^{3}} - 9 \frac{\mu_{B}T}{s}$ $=\frac{1}{S}\left[\sum_{m=1}^{N}c_{i}^{2}-ykgT\right]$

 P_5 chayes it $2x$ ke bisser or Snaller flu_{α} $(2dNFI)$ kgT Nose-Hoour, doesn't need time trafora, but non resportis for $S. H. O.$