Lecture 7- "Real" Liquids and Interacting systems of molecules
H (\vec{x}) = $\sum_{i=1}^{\text{ideal}} \vec{p}$ /2m + $U(\vec{r})$ $\mathcal{L} = \{ \mathbf{Z}_i \}$. The set of \mathcal{L} U < what is it in general

 ϵ **ר>ס** \leftarrow $\hat{\mathcal{L}}$ $a + 35$ $N(r) = \int dr P(r)$ $0. - 30$

3 In a gas ω \bullet $Q \odot$ 6 repulsion 1 \bigcirc typice! $d(r)$ (10 O dependence 550

 \mathcal{E} After members
Reportin (mixture) M_{ν} $Q(N, V, T) = \frac{1}{N!} \int_{S^N}^R d\rho^{sv} \sqrt{\frac{1}{2} \rho^{sv} \sqrt{\frac{1}{2} \rho^{sv} \rho^{sv}}}$ $\beta = \frac{1}{k_{g}T}$

 $\mathcal{U} = \kappa \varepsilon + \kappa \varepsilon \varepsilon \mathfrak{u}(\varepsilon)$ $\int d\vec{x} e^{-\beta(k\epsilon + \gamma \epsilon)}$
 $-\int d\vec{x} e^{-\beta(k\epsilon + \gamma \epsilon)}$
 $-\int d\vec{x} e^{-\beta(k\epsilon)} d\rho e^{-\beta k\epsilon}$ $\sum_{i=1}^{n}$ $N = \sqrt{\frac{k^2}{2\pi m kT}}$

 $Q(u,v_{1}) = \frac{1}{\frac{1}{\sqrt{3}} \int_{\sqrt{3}}^{1} 4\rho^2 e^{-\beta u(\rho^2)}$
 $\int_{0}^{1} 4\rho^2 e^{-\beta u(\rho^2)}$
 $\int_{0}^{1} 4\rho^2 e^{-\beta u(\rho^2)} e^{-\beta u(\rho^2)} e^{-\rho^2} e^{-\beta u(\rho^2)}$ $U(\vec{q}) = \begin{cases} U(\vec{q}) & \text{if } \vec{q} \text{ is both} \\ \varphi & \text{if } \text{any } \vec{q} \text{ is both} \end{cases}$ $\lfloor \bigcup \rfloor$

 $\int_{-\infty}^{\infty} d\theta_{1} \int_{-\infty}^{\infty} d\xi_{2} \cdots \int_{-\infty}^{\infty} d\xi_{g\omega} e^{-\xi u(\xi^{2})}$ also say $Q = \frac{1}{N!} \frac{1}{\lambda^{3N}} \int_0^1 dg^{3N} e^{-\beta U(q)}$ $Z(\omega_{1}\omega_{T}) = (U) = Q \cdot N! \cdot \lambda^{3N}$ Configurational partition funct.

What is the prob. of finding
every particle within dg^3 of $\tilde{q} = (\tilde{q}, \tilde{q}, \ldots, \tilde{q})$ $P(\vec{q})d\vec{q} = \frac{1}{z}e^{-\beta u(\vec{q})}d\vec{q}.d\vec{q}$
 $u(r_{ij})$

Preds of MCIQQ $mc2Q_2$
etc averaged over all other AC UV.

 $P^{(n)}(q_{11}q_{2}, q_{3}) = \int d\vec{q}_{n+1} d\vec{q}_{n+2} d\vec{q}_{n+1}$
 $n < N$ $\left(e^{-\beta U(\vec{q})} / z \right)$ If we don't care about
partitule identity $P_{(n)}^{(n)}(\vec{q}_{1},... \vec{q}_{n}) = \frac{N!}{(N-n)!} P_{(n)}^{(n)}(\vec{q}_{1}... \vec{q}_{n})$

nice way of writing!
1 déntité d'interne publi $I^{defn+1^{\alpha}+n+1}_{\alpha}$ of $\frac{1}{2} \int d\vec{q}$ of $e^{-\beta u(\vec{q})}$ $S(q_{1}-q_{1}^{\prime}) \cdot S(q_{2}+q_{2}^{\prime})$ π 8(\ddot{q} : \ddot{q} : 1 $=\left\langle \begin{array}{cc} n & 1 \ \sqrt{n} & 1 \ \frac{n}{2} & 1 \ \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \end{array} \right\rangle_{q_{1}^{'}}, q_{2}^{'}...q_{n}^{'}$

I last grantity: $C_1^{(n)}$ $(\vec{r}_1, ..., \vec{r}_n) = C_{(\vec{r}_1, ..., \vec{r}_n)}$ $S = \sqrt[N]{1}$ Interested in $g^{(1)}$, $g^{(2)}$ $(29 \t9^{11}) = 8^{11}/8)$

 $P^{(n)}(\vec{q}) = \int d\vec{q}_{2} d\vec{q}_{3}...d\vec{q}_{0} e^{-\beta U(\vec{q}^{2})}$
 $\int d\vec{q}_{1} P(\vec{q}_{1}) = \frac{Z}{Z} = 1$ $\int d\hat{q}, g^{(1)}(\hat{q},t) = \int d\hat{q}, [\sqrt{P^{(1)}(\hat{q},t)}]$ $= N \cdot \int d\phi_t \int^{0} (\phi_t) = N$ $N^2 I$ sotopic" approximatric
 $p^{(1)}$ (g) = $p^{(1)} = 1/\sqrt{2} \cdot 30^{(1)} = N^2 N$

 $g^{(2)}(\vec{\hat{q}}, \vec{\hat{r}}_2) = \frac{\mu(\mu - 1)}{p^2} \langle S(\vec{\hat{q}} - \vec{\hat{q}}_1) S(\vec{\hat{q}} - \vec{\hat{r}}_2) \rangle$ in Isotropic system $9.1 - 9.2$ mathers U $\vec{R} = (g^2, f\vec{q},) \cdot \frac{1}{2}$ $g(\vec{r}) = \frac{p}{3} \times g(\vec{r}\cdot\vec{r})$ $7 = (q - \hat{q}_1)$ If anyle doesn't maker integrating out, 0, d, \vec{R}

compare to $\frac{4\pi r^2\delta r}{\pi r^2\delta r}$ shell
 $\frac{4\pi r^2\delta r}{\pi r^2\delta r}$ $cont
expected # $y^{g}$$ </u>