Lecture ⁷ : Real Liquids & Gasses Interacting systems of molecules - Defore we don't with iden gasses , Sy Skus in N, U, I ensemble, but \vec{G} = $\sum_{i=1}^{n}$ Now we will think about systems that interact, namely ~ $H(\overrightarrow{p}_1\overrightarrow{q}_1)=\sum_{i=1}^{n} \overrightarrow{p}_i\overrightarrow{q}_n$ V_{2n} + U($\hat{\gamma}_{11}$ ₁²₂,.. \cdots \widehat{z}_{ν} These interactions could be positive or negative - if negative Catharine) system will condense For molecules, typically citarion at long surge & repulsive at short range This means at low enough temps , high press , form a ligil, then solid (phase translater)

Today we will talk about the structure of liquids and gasses when indentians Structure" means what is the average arrangement of the ators/molecules In a solid, we may have (22) square latin P (-) V = 1 m = 100 do we chancedeutre
P (-) V = 1 m = 1
P (-) V = 1
a ar 2 = 2 = 0 $P(1)$ $P(1$ $Q7>0$ $\int d\cdot P(r) \approx 4$

In a liquid, as we may be able to predict later, nore lile

O C C C S (st s Lell,

O C C S (st s Lell,

O C C S (s)

L'arrais de model (st s Lel)

Will be a fonc repulsion shell un gas, gas l'esprison d'one aux dist These could also depend an angle, but Let's see how we can define this face from

 $\mathbb{Q}(\mathcal{N},\mathcal{V},T)=\frac{1}{N!}\int_{3^N}\int_{3^N}\rho^2\int_{3^N}\rho^2\in B(\Sigma_{2^N}^{\geq 2}+\alpha(\xi))$ $=\frac{1}{N!}\cdot\frac{1}{3N}\int_{V}w_{\vec{g}}e^{-\vec{g}l(\vec{g})}$ integrate over box Cosside, Q has $\int_{-\infty}^{\infty} dq^{x} \int_{-\infty}^{\infty} dq^{z} - \int_{-\infty}^{\infty} dq^{z} dq^{z}$ but can define $U(\vec{f}, \vec{f}_{z}, \dots, \vec{f}_{w}) =$
 $\begin{cases} 0 & \text{if } \vec{f} : z_1 \dots \hat{f}_{w} = 0 \\ 0 & \text{if } \vec{f} : z_2 \text{ or } \vec{f} : z_1 \neq 0 \\ 0 & \text{if } \vec{f} : z_1 \neq 0 \end{cases}$

Hen $\int_{-\pi}^{\pi} \int_{0}^{\pi} \vec{g} \cdot \vec{f} \cdot \vec{f} \cdot \vec{f} \cdot \vec{f} \cdot \vec{f} \cdot \vec{f} \cdot \vec$ $Call Z(N, V, T) = \int_{V} d\zeta_{k}^{N} e^{-\beta M \zeta_{k}^{3}} = Q \cdot N! X^{N}$ configurational partition function

The prob of finding a particular particle within
day of a f (given given find) is $P(\vec{q})d\vec{q} = \frac{1}{z}e^{-\beta U(\vec{q})}d\vec{q}.d\vec{q}.$ What if we just want to know the grob
of finding, eg, $\frac{5}{100}$ particles at positions
 $\frac{2}{5}$, $\frac{7}{5}$, $\frac{1}{5}$, $\frac{1}{5}$, particles at positions degnees of freeday, l'ike before. In general , $n < N$
 $\varphi(n) = \int d^2_{4n_1} dq_{n_2}... dq_{n} e^{-\frac{3}{2}n(1-x)}$ But me don't are about which n it Indistinguishable. Could pick any
particle as i, N-1 as i, N-2 as 3

Hence the prob of finding any particle at q?, any at $\frac{1}{8}$ 1 ... 99 = $P^{(M)}(q), \dots, q_n) = N! \n\qquad (N-n)!$ $\frac{1}{2} \int_0^1 q_{n+1} \cdot q_{n}^3 e^{B(x(q))}$ A nice way of writing the integral $\frac{1}{2}\int d^{q}$ orthonor $e^{-\beta u(q)} = \frac{1}{2}\int d^{q}$ $e^{-\beta u(q)}$ $\delta(q-q') \times$ = $\int_{\frac{1}{2}}^{2} \int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{2}} \frac{1}{\sqrt{2}} e^{-\beta t} d\theta}$ = $\int_{\frac{1}{2}}^{2} \frac{1}{\sqrt{2}} \int_{\frac{1}{2}} \frac{1}{\sqrt{2}} e^{-\beta t} d\theta}$ = $\int_{\frac{1}{2}}^{2} \frac{1}{\sqrt{2}} \int_{\frac{1}{2}} \frac{1}{\sqrt{2}} e^{-\frac{1}{2}} \frac{1}{\sqrt{2}}$ = $\langle \vec{q}; q \rangle$ } $\langle q; q \rangle$ thermal amonge confirm # ways this on figurefier englans Lets define I last gantily, where $p = \frac{N}{V}$ $O^{(n)}(9,192\cdot\cdot\cdot7n) = P^{(n)}(9,19n)/p^{n}$

we'll see why in ^a second . are will be in guested in g \int , \int , \int $SIm(1e5F - CaseS)$. Whet is g $\left[\begin{array}{c} 1 \end{array} \right]$. $\left[\begin{array}{c} 0 \end{array} \right]$ $\log P'(\vec{q}) = 1$, prob dis- $S'(q) = \int dg \, N^{(1)}(q) = N$ $\int_{I_{\infty}}^{I_{\infty}} \int_{\mathbb{R}^{d}} e^{i\theta} d\theta$ $(4) = 1$ $\frac{\sqrt{415}}{1000}$ g l $^{\mathsf{U}}$ o $^{\mathsf{U}}$ for an " isotropic " system , prob of finding ^a particle at ^a particular point has to be ^a canst , tegend on \Rightarrow $p''(g) = 1/4$, $p''(g) = 1/4$ $(\text{hence }$ the notation) and g^{μ} C_{θ}^{2} = 1 Now Lets consider $g'(q_{1}, q_{2})$ $\frac{(1000)}{(2000)}$ $\frac{(414)}{(2000)}$ = $\frac{1(N-1)}{1(N-1)} < 6(9-1)$ **f** $\int_{0}^{1} \int_{0}^{1} (4 - 9i)^{2} e^{i} dx$

Mis makes 9⁰² Look like it depends on 2 positions. Homener, me will see tous on Isotropic system, only depends on $F = 9 - 42$, and other only $|c|$ \Rightarrow define $f = \frac{1}{2} (g_1 + g_2)$ $r = g_1 - g_1$ $q_1 = 1 - V_2$ $q_2 = 1 + V_2$ $\begin{array}{rcl}\n\text{need} & \text{dg.} \quad \text{dg.} \\
\frac{d}{d} & \frac{d}{d} \\
\frac$ This means Jogdy P19, 24 - S d Rd- P(R,r) $O(C_1 | L) = \frac{N(L^{-1})}{\rho^2 L} \int d_{\theta, 5}...d_{\theta, \omega} C^{3} d(\theta - k_{r}, \theta + k_{r}, - \theta, \omega)$ define $g(r)^{2}+\int dP g^{(2)}(r_{1}R)$ since déstrib $g^{(\frac{3}{r})} = \frac{N-1}{P} \leq 5(\frac{3}{r} - \frac{3}{r})$ $(ocathu)$ then

g (2) Says how likely are you to tagged particle at the origin Generally we can also only consider lil, distance go to spherical where $x^2+y^2+z^2z_1^2$
 $x^2rsin\theta cos\phi$
 $y^2rsin\theta sin\phi$
 $z=rcos\phi$ Jacobian is r²sinodrdodd & istyntiu 080 gives 4 to 2 dr Result: $\left| \begin{array}{c} 0 \\ 0 \end{array} \right| = \frac{(N-1)}{4\pi\rho r^2} \left\langle \frac{0}{r} \left(r - r^{'1} \right) \right\rangle$ In practice, histogram how often you see ce particle between Γ and $\Gamma + \Delta \Gamma$ then can pare to how many you expect it Uniform $\rho(\frac{U}{3}t(1+4\pi)^3-\frac{V}{3}t^{3})\approx 4\pi r^{2}\pi^{-2}$

This get is what was plotted before go i ' r ml goes $\overline{\circ}$ 1 as $\overline{\circ}$ $\frac{1}{2}$ b/c prob seeing 2 particle betweer r&rtst away trong another is no more or less than In total H th D $_0$ $\int_0^2 g(x) dx = (N-n) \int_0^2 f(x) dx$ \geq (N−l) ∼ລັ $V_{l} = 4\pi p \int_{0}^{m_{l}}$ gloide, particles in $5t$ solvation's bell, "coordination number"