Phase Transitions, Pt (
We are all very faniliar w/
Pherse transitions in our day to day life, but we don't always think about
day life, but we don't always think about
Many interesting aspects
1) What is hopering microscopically
2) What is happening Mancroscapically
3) how many pluse transitions have "vaivosa"
properties that don't depend on the specific system
This is what has fasionated people from skt
mich far ~ 100 years
4 miger modern aveas of work:
2) What hoppens in unusual environments, es w/ confinement
1) How to sample / observe / predict pleases is smulation 2) What hopers in unusual environments, eg w/ confinement (water in a nawther, protein) 3) what is phase drastan for many components (iipids) 4) What hopers out of equilibrium?
We have to start w/ the basics de
understand the more complex plenomera

freeze/crystallize (Tudermen Chyter 16) Basic Whuse P Solid liquid Tooduse Juparite

Diagram

Solid

Josilian

Solid

S Cross a line, discontinuity in some quantity: eg, density (herset: discontinuity in deriv. of free energy Edensity ~ (papp) Modern definition: has to be latert heat at cossing @ For right, can go between places w/o latent heat or weind behavior. @ Critical point: 2nd order pluse transition Charge in Second deriv, but disjortinuous Modern! Continious pluse transition, diversing succeptibility, powerlaw divergence of correlating length (Discuss man later) Typically, break symmetry in direction Liquid -7 solid, translational symmetry, Liquid -7 gas, o correlation length-> finite correlation (glr))

Need model systems to analyze to illustrate the important concepts and which can be "solved" as the competer or or paper Magnetization Phenomenon: Spins on lettice, like being in same direction but entropy prements ordering. Lower Tor increasing B field has ordering Transition Need "order parameter" to describe a pluse transition, a quantity that distingrishes the phases. D-Dr works for Liquid gas as Liquid solid, o when a Liquid, nonzero oflewise there $\int M = \langle \sum_{i=1}^{N} \sigma_i \rangle$ on = M/N is mayne freature no field, Sporteneous mesne tization To is curie temp, Pierre Corrie studied this transition Can we "during this result. There to start w/ Kamiltonian in canonical ensemble and get Z (N, V, T) to campute M

"Ren(" Hamiltonian: 5 covp(in tensor - \taniltonian: 5 \tanilt where \$; = to/2 &; & pali matrix Approximation, consider only 2 direction & field in 2 - direction, then $H = -\frac{1}{2} \sum_{ij} 5_{ij} \sigma_i \sigma_j - \sum_i h \sigma_i$, $\sigma_i = \underbrace{5 \pm \frac{1}{2}}_{2}$ if we make the Arther approx that coupling is short ranged Jij = § 5, 18 j neighboring sikes [Inverted by Lenz, gove to good shelent ising to
2 for
Study in 1924)

fouble We can solve in 1d, apparex & exact. On Sayer (1944)

control solved 2d exactly, no one has done 3d get... if J>0, like to align, and h>0, like to alight facing up, hco, down w/ h=0, His min when all up or all down Consider can figuration ... TM JJW.....

M=0, and E=-NJ+J, so interfere has constantly

Emin

T=0 do you expect full phuse from

に るな: M=0 interface hypically of size N'/2
and this is big enough cost to
stabilize ordered State (Usar Ree fension") Still can learn a lot from 1d ising model, including mapping soll sorts of physical problems to it, like adsorption to a surface, or folding of paptides So what is $Z(N_1V_1,T)$?

Lets rewrite H = -5ZS:S:H - hZS:we can add periodic bondery conditions, 5 NH = 5, and write in a more symmetric way = \frac{7}{2} (-75;6;41 - \frac{1}{2} (5;+5;41)) Z= 2 e-362 = = = = (5; +5; + = (5; +5; +1)) for h=0 Delect socialies Let 5,'=5;5;-, can only be =1, but 2 ways