
Lecture 2 : probability distributions

and classical mechanics
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But where do these Xi came from

Sometimes they are generated
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" like coin flipping

or dice rolling → Monte Calo Sampling

Sometimes they come from MD ( next )

where Xi  → Xin is determined

by Newton 's equations
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Measurements Xi from experiments
or sinuation s are assured to come

from an underlying probability distribution

put , egpµ
- ×

Properties :

① likely hood Xfce
,

b ) = fab Pcxldx

x

② normalized
, fpcxsdx El

- ←
or repeat def

^

Aug : SA > = FALA Pcxldx

Meen :
in =Lx > = fxpcx ) dx

✓ a s.co?Lx7-Lx7Z--fx2PCx1dx-yu2=fCx-rTPCxldx

These are fixed parameters for the
distribution Isg stem



Very important distribution
,
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It feels like if we sample from

a distribution and measure a

quantity are Should get an approx to
the true value

← Sample mean
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In stet mech , we imagine taking our

large system
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Then TEAT -

Yfµ
Hence fo a large system we always

measure the
aug quantity

( if 8 an be sufficiently small )
Central limit theorem :

Suppose Xi from any PCH
Sample mean µn= IN
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Classical Mechanics
We will assume for now that our

System obeys classical mechanics
,

The positions of all the atoms are given
by F -

- Cri
, ,
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and D= d t=r
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Newton's equations say
that

Fama or
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if we know Tco ) and Eco ) and Ftl
,

everything is determined
,

So what is F ? If there is no frickin
or dissipation in the system

,
and me

Know the potential energy

of the system UCA
,

then
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The total energy Ecm is kinetic
t potential energy ,

Ecr ) = Iziiiv't Ucr ) =Ekin then

where Pi = miv ; is the momentum

If F = - 17h
,

then these are conservative

forces
,

b/c the total energy is canst
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Lagrangian mechanics
-

for conservative systems ,
there is

Another was
to solve classical probus

called lagrangian mechanics
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The Lagrange eqn says
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' Izmir

This is of course

ME = - BU = F

Why is this helpful ? It apples
In other coordinates ie
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Lagrangian mechanics is useful Canter

for formulating certain methods
,

but

it also lead 's to a second generalized

method
, Hamiltonian mechanics

Here there will be a function HCP , it )

IT we
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conjugate
"

momenta
.

in Cartesian
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but now we generalize to
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H generates dynamics in any
cooed system

The N and L are connected by a

Legendre transform ( book 1.5 )

( later )
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