ecture 2: probability distribution and classical mechanics

Reminder: Last time we defined the following quantities n µ - $N\sum_{i=1}^{l}x_{i}$ and σ ' - $\frac{1}{N}$, $\frac{1}{N}$ (X; $-\mu$) ' But where do these Xi came from Sometimes they are gunerated $24a$ p Fike coin flipping or dice rolling -> Monte Carlo Sampling Sometimes they come from MD (next) $where $X_i \longrightarrow X_{i+1}$ is determined$ by Newton 's equations Some times they came from a series of Xpts , measurement $(\, , \, 2 \, , \, 3 \, , \, ... \,)$

Measurements X; from experiments
or sinulations are assured to come from an underlying probability distribution $P(X)$, eg π Properties: Vroperties:
(1) likely hood $X \in (c,b) = \int_{a}^{b} P(x)dx$ $\frac{1}{2}$ normalized, $\int_{-\infty}^{\infty} F(x)dx = 1$
 $-\infty < -\infty$ are defⁿ $Avg: < A>= \int A(y) P(x) dx$ Meen: $\mu = \langle x \rangle = \int' \chi P(x) dx$ V_{cr} : $\sigma^2 < x^2 > -\langle x \rangle^2 = \int_{-\infty}^{\infty} f^2 P(x) dx - \mu^2$ $=\int (x-\mu)^2 P(x)dx$ These are fixed puremeters for the

Very important distribution, $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} v \sqrt{2(\mu_1 \sigma^2)}$ normal distribution (Hw, Preve normalization $\frac{1}{2}$ can st) It feels like if we sample than a distribution, and neesure a quantity we should get an approx to Le Sangle neur $\mu_{N} = \frac{1}{N} \sum_{i=1}^{N} x_{i}$ but what is any μ_{N} $\langle \mu_{\mathsf{u}} \rangle = \frac{1}{N} \sum_{i=1}^N \langle x_i \rangle = \frac{1}{N} \sum_{i=1}^N m = \mu$ $\sqrt{a r(\mu_0)} = \langle \mu_0^2 \rangle - \langle \mu_0 \rangle^2 = \langle \mu_0^2 \rangle - \mu^2 = \langle \frac{1}{N^2} \sum_{i} \chi_i \chi_j - \mu^2 \rangle = \frac{1}{N^2} \sum_{i} \langle \chi_i \chi_j - \mu^2 \rangle$ $\langle x, x_{0}\rangle = \begin{cases} \langle x^{2}, y^{2}\rangle & i = 0 \\ \langle x, y^{2}, y^{2}\rangle & = 0 \end{cases} = \frac{1}{N^{2}} \sum (x_{1}x_{0}) - \mu$ $= \frac{1}{N^{2}} \sum_{i} \langle x_{i}^{2} \rangle \cdot \mu^{2} = \frac{1}{N^{2}} \sum_{i} \langle x_{i}^{2} \rangle - \mu^{2} = \frac{1}{N^{2}} \sum_{i} \text{Var}(x_{i}) = \frac{1}{N^{2}} \sum_{i} \sigma^{2} = \sigma^{2}/N$

In stit mech, as inaged their our lage system $\frac{1}{\sqrt{1-\frac{1}{1-\$ $N_{boxes} = V/gd$
 $N_{ molecules} = V/gd$ Compute A; un ang subsystem Then $\sqrt{\langle A-\langle A\rangle\rangle^2} \sim \sqrt{\sqrt{N}}$ Hence for a large system we alarge measure 11. aug guantity (14 % can be subdiciently small) Centrel limit theorem. Suppose X. from any PCX) Sample meen $\mu_0 = \frac{1}{N} \sum_{i=1}^{N} x_i$
 $P(\mu_0 - \mu) = \frac{1}{N} \sum_{i=1}^{N} x_i$ $P(\mu\nu-\mu)$ \Rightarrow $\mathcal{N}(0, \sigma^2/n)$ which means aug error on mea
 $((\mu_{N}-\mu)^{2})= \sigma^{2}/\nu \rightarrow$ std der of men or $/(\pi)$

Classical Mechanics We will assume for now that our System obeys classical mechanics, The positions of all the atoms are given $2y = (r^{2}, r^{2}, ..., r^{2})$
and $r^{3} = (r^{2}, r^{3}, ..., r^{2})$ Newton's equations say that F=ma or $M; \Gamma_i = F_i(\Gamma_i, \dots, \Gamma_p)$, 3N diff eqns. if we know \hat{v} (o) and $\hat{\chi}$ (o) and $F(r)$,
everything is determined, So what is F. If there is no friction
or dissipation in the system, God ine Know the potential energy of the system $U(F)$, then $F(r) = -\nabla U(r)$ $\overline{r_{i}(r)} = -\frac{dU(r)}{dr_{i}}$ $\overline{r_{i}(r)} = -\frac{dU(r)}{dr_{i}}$ $\overline{r_{i}(r)} = -\frac{dU(r)}{dr_{i}}$ $\overline{r_{i}(r)} = -\frac{dU(r)}{dr_{i}}$

The fotal energy $E(r)$ is kinetic
+ potatial energy,
 $E(r) = \frac{1}{2} \vec{m} \vec{v} + \mu(r) = \vec{r}^2 / \vec{m} + \mu(r)$
where $\vec{p}_i = m_i \vec{v}_i$ is the momentum $1f = -\gamma$ *li, then these are conservative* forces, b/c the total energy is ronst $\frac{dE(r)}{dt} = \frac{1}{2}m(vv+iv) + \frac{du(r)}{dt}$ Identity $\frac{dX(l_1l_2,...,l_u)}{dt} = \sum_{i=1}^{N} \frac{\partial X \partial l_i}{\partial t_i} = \sum_{i=1}^{N} \frac{\partial X}{\partial t_i} l_i$ $\begin{array}{rcl}\n\sqrt{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\sqrt{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\$ Logsenzian mechanics for conservative 598 kms, there is another was to solve classical problems
called lastasian mechanics

 $L(r, \vec{r}) = K(r) - U(r)$ The lagrange egn sans $\frac{d}{dt}(\frac{\partial f}{\partial r}) - \frac{\partial f}{\partial r} = 0$ Since $\overrightarrow{k} = V_{2} m \overrightarrow{r}^{2}$ This is of course $M\ddot{S} = - \ddot{U}U = F$ Why is this helpful? It applies In other coordinates ie $\frac{d}{dt}\left(\frac{\partial \Psi}{\partial \dot{q}}\right) - \frac{\partial \Psi}{\partial \dot{q}} = 0$ Where $\alpha_{i} = f_{i}(\vec{r})$ (see homework?/ Set $\lceil \cdot \zeta \rceil$

Layremaine mechanics is useful fater for formulations certain methods, but It also leads to a second generatived Method, Haniltonin mechanics Herethere will be a function Il (?) 7 ave conjugate momenta. In cartesian $P_i = \frac{1}{0} \frac{94}{94}$ (of course 1 13 Kla) = $\frac{m i}{2}$ 5 and

 $K = \sum \frac{p_i^2}{2m_i}$ $\mathcal{H} = K + \mu(\mathbf{q})$ $\frac{1}{e_i} = \frac{\partial H}{\partial \rho_i}$ Harilton's cens $5.5 - 94/86.$

It generetes dynamics in any coord system The Hard I are carrected by a Jegende transform (pool (5) $(cat)^{2}$ $H(p,q) = \sum p_i \cdot q_i - \frac{1}{2}(q, \dot{q})$ (for centester) devous?) $\sum mv^{2} - (1/2 mv^{2} - 1/2)$ $=$ $\frac{1}{2}$ m 2 + u Since $H = \frac{\varepsilon(r)}{4\pi r_1}$, expect $\frac{dH}{dt} = 0$ $\frac{dH(q,p)}{dt}=\frac{1}{2}p.$ = $\frac{1}{2}$ $\frac{1}{2}$ $= 5 - p_1 q_1 + q_2 q_3 = 0$