Enhanced Sampling and Rare Events

Enhanced Sampling We said before that the time any $\langle A \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} A(X_i)$ for N usc samples or N = T/at md fine skps is from if
the system is ergodic, ie sees all the states The problem in real singulations is N 700, $N \sim (1 - 10^{50})$ This works for some problems, but there IS a very common problem. Soppose U(x) $F(3)= -KT log \int_{0}^{x} S(M(\vec{q})-\vec{\lambda}) e^{-\vec{p}M(\vec{q})}\vec{q} -F_{0}$ (Potential of mean force) Rate $4-3$ 8 9 9% 9 9 9 9 9 10 10

So if Yeate 22 Nst, then you will Le trapped in A (or B)
(rare event problem) B (ar B) These are called enhanced or accelerated Sampling methods, and generally estimate the (free) - eversy diff between the too $(A = -ETlog .PS/p_A 6$ like equilibrium const I den! increase temp > rate faster $\frac{7}{1}-\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{$ $\langle A\rangle_{T_i}=\int dxP_i(x)A(x)$ $P(X) = C_0(X)$ $\frac{c_0}{2!}$ $\frac{C_0(x)}{\sqrt{1-x^{1/2}}x^{1/2}}$

 $\langle A \rangle_{t} = \int dx A(x) w(x) \cdot \frac{w_{2}(x)}{z_{1}}$ $=$ $\frac{1}{4}$ \times A (x) $\frac{w_1(x)}{z_2}$. $\left(\frac{w_1(x)}{w_2(x)}\right)$. z_2 $= \frac{Z_2}{Z_1}$ $\left\{ dx A(x) \frac{w_1(x)}{w_2(x)} \cdot \left[\frac{w_2(x)}{z_1} \right] \right\}$ $=$ 32/2, $\left\langle A^{\omega}/\omega_{z}\right\rangle_{T_{2}}$ f_{05} N,U,T = $Z_{7/2}$, $\left\langle \frac{1}{1}e^{i\frac{1}{16T_{1}}(1+x)+\frac{1}{16T_{2}}(1+x)}\right\rangle$ $=$ $\frac{1}{2}$ $\left(\bigwedge_{e} \frac{-w_{x}}{F_{b}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right)$ $Z_{1/z} = \frac{\int dx w_i(x)}{z} = \frac{\int dx w_i(x) \cdot \frac{w_i(x)}{w_i(x)}}{z} = \frac{w_i(x)}{w_i(x)} = \frac{w_i(x)}{w_i(x)}$ = $\langle exp(-\frac{u(x)}{k_{s}}(1/n - 1/n))\rangle$ $1 + T₂ > 5T₁$, wetghts very shull problem numerically

Solution , run manysins @ d&fT si $\frac{1}{\sqrt{T}}$; $\frac{1}{T_{1H}}$ not too big Replica exchange MD; Parallel tempering Editations Every 2 steps, try to swap contrys T_{5} $\frac{1}{\sqrt{2}}$ - $\begin{picture}(120,140) \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,140){\line(1,0){150}} \put(150,14$ \times Then sample can be harted up & cooled down to $T_{1,1}$ overcoming barrier but still sampling T_{1} Exchange $p\in b^2$. $P(A \nless B) P(A) = P(B \nless A) P(B)$ $A = 3$ $\frac{3}{7}$
Then sample can be herted $\frac{1}{4}$ cooled down to
 T_{11} overcoming barcies $b + 3$ fill sampling T_{1}
Exchange prob? $P(A \ge B) P(A) = P(B \ge A) P(B)$
 $A = \frac{2}{3}$ $\sqrt{5} \text{ or } \frac{3}{4}$ $B = \frac{1}{2} \times 2T_{h1}$ get, $\frac{1}{2}$ The sample can be herted w^2 cooled down to
The sample can be herted w^2 cooled down to
T₁ snarroning karrier b.t still sampling of
Exchange prob? $P(A \ge B) P(A) = P(B \ge A) P(B)$
 $A = \frac{2}{3}R^2T_L$, $3eT_L$
 $B = \frac{2}{3}R^2T_L$, $3e$ μ _{kt} $-\alpha$ e hented up 2 cooled down to $\overline{\mathcal{O}}$ $P(A \geq B) = m \cdot n (1, R(B))$ = mm(1, $e^{\frac{C}{2} + C}$ = u(s)/km) teeny lktn

 $\Rightarrow P(A\rightarrow B)=m_{10}(1,e^{-\frac{1}{T_{h}-\frac{1}{T_{h}}}-u(9)(\frac{1}{T_{h}-\frac{1}{T_{h}}})})$ $= m \ln \left(1 e^{-\left[\frac{u(x)-u(y)}{k} \cdot \left(\frac{1}{T_h} - \frac{1}{T_{\ell}} \right) \right]} \right)$ $14T_{12}T_{11} + \frac{1}{T_{h}} - \frac{1}{T_{h}} < 0$ $auab - l(l+1-uly)$ $\rho \geqslant 0$ so swaps usually have prob 21 Now since Swaps satisfy detailed belance and MD or MC @ each temp satisfies detailed balance, here a chain of $X_i \otimes T_i$ of $P(x_i) \rightarrow e^{-\mu(x_i)/\mu_{\sigma}T_i}$ & $\angle A > \sim \lim_{N \rightarrow \infty} \sum_{i=1}^{N} A(x_i^T)$

Go back to this probable I dea #2 UCA Idea: Torrie, Valleau 1977 What if we add a potential to this to ceduce the basic and correct for the effect Example $u'(x)$ Then $U(x) = U(x) + U'(x)$ This will give fast transitions from L-23 But how do we get
 $\langle A \rangle = \int A(x) P_0(x)$ when

We are sinulating with u_1 and
hence $F_l(x) = e^{-\beta u_1(x)}/z_1 = u_1(x) /z_1$ We actually did this before, pertorhabin theory $\langle A \rangle_{0} = \frac{1}{7} \int dx A(x) e^{-\beta u_{0}x}$ like before, mult by $e^{-\frac{3\pi i}{12}}/z$, in top and = $\frac{1}{2} \int dx A(x) e^{-3u_0(x)} \cdot e^{-\beta u_1(x)} \neq 0$ $EXP(-Bu_{a}\Psi))/exP(-Bu_{i}A)=exP(-Bu_{i}A)+pu_{i}(x))$ = exp (- pho(x) tp (ho(x) th'(x))) = $Z_{1/20}$ $\int dx$ Acrie $e^{-\beta u(x)}$ = $\langle Ae^{t}Bu^{l(x)}\rangle, \angle(e^{t}gw^{l(x)}) = \frac{CA/2^{x}}{C(1,1)}$ What is this weight doing? correcting for every time there is something near XX it should
have less aregut