Lecture #1: Introduction to Statistical Mechanics

First : @ Introduction , my background and current position 2 Survey

3 Quick , stand & introduce selves to cachothe

4 Go through syllabus

What is statistical mechanics? (Statistical physics, statistical thermos. .
.
. In chemistry we are interested in atoms & molecules : how molecules interact with are another We know properties of atoms & s mall molecules in 150 khor can be computed using QM Most chenistry experiments isvole large collections of molecules , \sim \circ (\circ \circ), so we cannot compute anything abort this

directly using QM or ever Classical Mechanics (Adeston) However! we know m_{ν} properties of systems an be measured that hare nothing to do with the precise coordinates $O4$ all the $\{O^2\}$ molecules in a box (eg. phese transition temperature, Keet cepicity) Hence we might Swmise these properties arise when amusing soneeowwtity over all the possible positions of every molecule in the system (lets assume no reactions for nowt

In this class! look@ how ble muser grant ites arise f f systems of molecule rnet classical mechanics with ^① thermodynamic quantities (e.g . Cntropy , free energies , heat capacities etc) [→] emerge from avg inforchari ω look at nonthermodynamic properties such as spectra, rates of going ⑧ learn about how computer simulations can help generic solutions for problems that cannot be sowed exactly Real exampled 1) Whet is the structure of a liquid, and how does this connect to how it is neesmed

② general principles of how polymess beheve in solition, $includ$ ing how poteins A ^③ how do things melt :, freeze self assemble , how does this depend on dimension? confinement, rucial to understand statistical quantities used in this class , Ked example, diffusion: later we may cover diffusion in3D, particle w/ brownian motion, $Einsdtin 1905$ Consider the simpler case of something trapped in one dimension

Since
$$
avg
$$
:

\n
$$
\langle A \rangle = \lim_{T \to 0} \frac{1}{T} \sum_{i=1}^{T} A(x_i)
$$
\n
$$
\frac{1}{T} \sum_{j=1}^{i} A(x_j)
$$
\n
$$
\frac{1}{j} \sum_{j=1}^{i} m_j = \alpha N_+^i - \alpha N_-^i
$$
\n
$$
\langle d_T \rangle = \lim_{T \to 0} \frac{1}{T} \sum_{i=1}^{T} \alpha N_+^i - \alpha N_-^i \approx \frac{\alpha [2e^{-i}]T}{\alpha}
$$
\n
$$
\frac{\alpha [2e^{-i}]T}{\alpha}
$$
\n
$$
or \frac{\alpha [2e^{-i}]T}{\alpha}
$$
\n
$$
or \frac{\alpha [2e^{-i}]T}{\alpha}
$$

howere , if you actually do expt, you will find $x = \frac{1}{\sqrt{2\pi}}\sqrt{\frac{1}{\sqrt{2\pi}}}$

Meeuve this by RMS d, Ld2> H *is* is a ave aver men $t_{\rm rel}$ for most problems in skt mech, me will imagine may copies of the system w/ diff init auditions I radar seeds Than we perform an "ensuite" \sim 9 (1) ensurble $=$ \sum_{n} P_n A_n \Rightarrow n $5hHz$ for this problem & others, we expect

 $\langle A \rangle$ tie = $\langle A \rangle$ ensurble

any A , it is

if this is true far

celled on exodic system Claudly, cannot show a systemis ergodic but we believe it do be two for MOST Systems $d_{\tau} = \sum_{i=1}^{n} a_{i}w_{i} \sim a_{N_{+}} - a_{N_{-}}$ $P_{N+} = (\begin{array}{c} T \\ N+ \end{array}) P_{(1-\rho)}^{p^{*}T-p^{t}} \propto N^{j}m_{s}^{2}\propto C^{s}m^{2}s^{2}$ $\langle N_{+}\rangle \rightarrow T_{P} = T/2, \langle d_{T}\rangle = \alpha(T/2) \cdot \alpha(T/2) = 0$ $\langle (d_{+}f) = a^{2}(N_{+}-N_{-})^{2} \rangle$ = $2^{\frac{4}{2} + \frac{1}{2}}$ ($2N_{1} - T_{1}^{2}$) = $2^{\frac{1}{2} (\frac{1}{2} + \frac{1}{2})}$ = 6^{2} (4 M+2 - 4 M+7 + 7²)) $\sqrt{kr} NF = \pi p (1-p) 2 (M_{+}^{2} - 4M_{2}^{2})$ $-\frac{1}{4}r^{2}(kp)$
 \Rightarrow $\leq N_{t}^{2}>2$ $\frac{1}{2}p(1-p)+\frac{1}{4}p^{2}(kp)$ \approx $\frac{1}{2}p^{2}$ = $c^{2}(4(Tp1-p)+4T^{2}p^{2}-4T^{2}p+T^{2})$ $f_{4}T^{2}p(l-2) + T^{2}$ $(*d*^{2})$ d T^{\prime} => $\sqrt{*d*^{2}}$ d T

This is an example of a stendard $\sigma^{2}=Var(\chi)=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\mu)^{2}$

where $X = \{x_1, x_2, ..., x_n\}$ = { x_i } and $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$

Importent: $1/\sqrt{\sum_{i=1}^{N}(x_{i}-x_{i})^{2}} = 1/\sqrt{\sum(x_{i}^{2}-2x_{i})x_{i}^{2}}$ = $\frac{1}{\sqrt{2}}\frac{\sum x_i^2 - 2\mu \sum x_i^2 + \mu \sum \mu^2}{\mu^2}$ $\langle x^{2} \rangle$ - $\mu^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}$ $\circled{1}$ Ver (x) = $\langle x^2 \rangle - \langle x \rangle^2$ $(2) \text{Var}(x) \ge 0 \Rightarrow \< x^2$ = <x > = x > = x + Stopped here

Measurements X; are assured to come from an underlying probability distribution $P(X)$, eg $\mathcal{P}(X)$ Properties: $\begin{array}{lll}\n\bullet & \bullet & \bullet \\
\hline\n\bullet & \bullet\n\end{array}$ \n
$$
\begin{array}{lll}\n\bullet & \bullet & \bullet \\
\hline\n\bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{lll}\n\bullet & \bullet & \bullet \\
\hline\n\bullet & \bullet\n\end{array}
$$
 $Avg: < A>= \int A(y) P(x) dx$ Meen: $\mu = \langle x \rangle = \int xP(x) dx$ V_{cr} : $\sigma_z < x^2 > -\langle x \rangle^2 = \int z^2 P(x) dx - \mu^2$ = $\int (x-\mu)^2 P(x)dx$

Very importent distribution, $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sqrt{N(\mu_1 \sigma^2)}$ normal distribution (Hw, Preve
normalization $-cos\left(1\right)$ Centrel linit theorem! Suppose X. from any P(x) Sample meen $\mu_N = \frac{1}{N} \sum_{i=1}^{N} X_i$ $P(\mu_{N}-\mu) \rightarrow \mathcal{N}(\mathcal{O}, \sigma^{2}/\mu)$ Which mens aug error on men $\langle (\mu_{N}-\mu)^{2}\rangle = \sigma^{2}/N \rightarrow$ std der of men or \sqrt{N}

In stit mech, as inaged their our loge system $F \times F$ $M_{\text{boxes}} = V_{\text{leaf}}$ a Nondeale \sqrt{x} Compute A; un ang subsystem Then $\sqrt{\langle A-\langle A\rangle\rangle^2} \sim \sqrt{\sqrt{N}}$ Hence for a large system we alarge

(If & can be subdiciently small)