
Homework 2: Microcanonical ensemble

Glen Hocky

Due: Oct 2, 2020

1. The Gamma (Γ) function as a generalized factorial. The Γ function has an important
property that we will use to derive the microcanonical partition function for an
ideal gas, which is that it acts as a factorial operator for integers. The gamma
function is defined as

Γ(z) =
∫ ∞

0
xz−1e−xdx (1)

Show that Γ(N + 1) = N! = N(N − 1)(N − 2)...(2)(1) by the following steps:

(a) Show that Γ(1) = 1

(b) Using integration by parts, show that Γ(z + 1) = zΓ(z) for z as a real number

(c) Using the above two properties, show that Γ(N + 1) = N! for N integers
greater or equal to 1.

2. Surface area of an N-dimensional sphere. In order to derive the partition function for
an ideal gas of particles, we needed to know the formula for the surface area of a
sphere in 3N-dimensions. Let’s actually derive this formula so we can see where it
comes from. It takes advantage of knowledge and similar techniques you learned
from Homework 1.
First, a quick definition, the way mathematicians write things. The volume of a
sphere-like object of radius 1 (every point is distance r <= 1 from the origin) in d
dimensions is called Vd. Confusingly, the surface area of that same object is called
Sd−1 (since it is an object which is 1-dimension “flatter”). The volume of d-sphere
of radius R is VdRd and the surface area is Sd−1Rd−1. So, e.g. V3 = 4

3 πR3 and
S2=4πR2.

(a) A d-sphere can be built by adding up a bunch of shells of smaller radius
(Think, make up a disk (d = 2) by drawing a bunch of concentric circles). The
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volume is the addition of all of the surface areas of the shells. So,

Vd =
∫ 1

0
drSd−1rd−1 = Sd−1

1
d

rd

∣∣∣∣∣
1

0

=
Sd−1

d
(2)

Show that this formula is correct for d = 2 and d = 3 using your knowledge
of circles and spheres.

(b) We already used polar and spherical coordinates to derive certain things. We
saw that if the function we want to integrate only depends on distance from
the origin, and r2 = ∑d

i=1 x2
i , then∫

dx1dx2...dxd f (r) =
∫ ∞

0
drSd−1 f (r)rd−1 = Sd−1

∫ ∞

0
dr f (r)rd−1, (3)

(do you see how this is true for spherical and polar coordinates?). If f (r) = 1
then we get back Eq. 2 (with different integration limits). If we can solve both
sides of this integral for any f (r), then we will have a general formula for
Sd−1.
Do the following steps:

i. Similar to last week, define I =
∫ ∞
−∞ e−x2

dx. Write Id as a product of
integrals over different coordinate variables and get an integral over a
function of r that looks like the left hand size of Eq. 3.

ii. Now that you an f (r), show that the right-hand side can be rewritten as
something proportional to Γ(d/2). You will have to do a substitution.

iii. Since we know the value of I from last time, we also know the value of
Id. Equate this value with the formula from the proceeding step to get the
final result for surface areas, (book equation 3.5.14, with n = d− 1)

Sd−1 = 2
πd/2

Γ(d/2)
(4)

iv. Given this result, what is the formula for the Volume of a d−sphere of
radius 1, Vd? Use the fact that d

2 Γ( d
2 ) = Γ( d

2 + 1) to simplify the equation.

(c) i. Use the definition of the gamma function to show Γ(1/2) =
√

π. Hint:
The right hand side should look familiar here. Reverse your substitution
from earlier to get a familiar integral.

ii. Use this result and the formula for Vd above to show that V3 has the value
you expect for a sphere.

3. Microcanonical ideal gas, finishing the derivation. In class, we worked out that the
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microcanonical partition function has the form

Ω(N, V, E) =
E0VN

h3N N!

∫ ∞

−∞
dp1dp2...dp3Nδ

(
3N

∑
i=1

p2
i

2m
− E

)
(5)

If we substitute pi =
√

2myi here, we get

Ω(N, V, E) =
E0VN(2m)3N/2

h3N N!

∫ ∞

−∞
dy1dy2...dy3Nδ

(
3N

∑
i=1

y2
i − E

)
(6)

(a) Use Eq. 3 and Eq. 4 to rewrite this as

Ω(N, V, E) =
E0VN(2m)3N/2

h3N N!
2π3N/2

Γ(3N/2)

∫ ∞

0
drδ(r2 − E)r3N−1 (7)

(b) Use the formula from class to split this delta function into two delta functions,
then perform the integral to show that

Ω(N, V, E) =
E0VN(2m)3N/2

h3N N!
π3N/2

Γ(3N/2)
E3N/2

E

∫ ∞

0
drδ(r2 − E)r3N−1 (8)

=
E0

E
1

N!
1

Γ(3N/2)

[
V
(

2πmE
h2

)3/2
]N

(9)

(c) Stirling’s approximation says that log(N!) ≈ N log N − N or equivalently N! ≈
NNe−N for large N. Substituting Γ(X − 1) = X!, using the approximation
N− 1 ≈ N for very large N, and using Sterling’s approximation for this term,
show that

Ω(N, V, E) =
E0

N!

[
V
(

4πmEe
3N

)3/2
]N

(10)

(d) Using our formula for entropy, S = kB log(Ω(N, V, E)), substituting the for-
mula we derived E = 3

2 NkBT, and neglecting kB log(E0) both because it is an
arbitrary constant and because it is not proportional to N,

i. Show that the entropy of a monatomic ideal gas is:

S(N, V, E) = NkB log

[
V
(

2πmkBT
h2

)3/2
]
+

3NkB

2
− kB log(N!) (11)

ii. And using Stirling’s approximation, derive the Sackur-Tetrode equation:

S(N, V, E) ≈ NkB log

[
V
N

(
2πmkBT

h2

)3/2
]
+

5
2

NkB (12)
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4. Gibbs Paradox. Show using the entropy formula from above (Eq. 11), that the en-
tropy of mixing of two boxes of identical particles is non-zero unless the 1/N!
factor is included in the microcanonical partition function (follow Tuckerman book
Section 3.5.1).
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