NYU CHEM GA 2600: Statistical Mechanics
Midterm

Glen Hocky
October 29, 2021

Instructions: This midterm is a take-home, and you can use whatever reference materials
you want. However, you should work on the midterm yourself, and not with others in
the class, so that I can assess each student’s learning individually.

Also, please note that use of any resource that answers questions for you (e.g. Chegg)
is definitely cheating. Please keep in mind that you are bound by NYU’s honor policy
(https:/ /cas.nyu.edu/content/nyu-as/cas/academic-integrity.html).

Your solutions should be written out as cleanly as you can (on paper, or using a
tablet) and then uploaded as a PDF to brightspace before 5PM NYC time on Friday,
November 5.

1. A little more lattice gas. (45 pts total) In the last homework, you compute the
energy for a lattice gas with N molecules on N; lattice sites, each with volume v.
This system is in the microcanonical ensemble, and N and N; are big enough that
you can use Sterling’s approximation if needed.

(a) What is the entropy of this system if any number of molecules are allowed
to be on any lattice site and explain why (ideal gas, no volume exclusion) (15

pts).
(b) Compute the pressure from this entropy. How does this formula connect to
what you might expect? (10 pts)

(c) Going back to the case of volume exclusion, compute the pressure from the
entropy. Does this pressure contain a term that is like what you got in the
previous case? It may not look like it, but expand your result in the limit of
small density p = N/V or p = N/N; to produce the equivalent of the virial
expansion we had in class. What is the second virial coefficient in this case?
(20 pts).

2. Grand-canonical ensemble (50 pts total). So far we have learned about the con-
stant N, V, E ensemble and N, V, T ensemble. Here you will learn about the con-
stant 1, V, T ensemble, where chemical potential is fixed instead of particle number.
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(a) Sketch a system and bath where particles/molecules can flow between them,
and the total N,V.E are conserved for the combined system (10 pts).

(b) Show for this ensemble that the weight of a given state is proportional to
e~ P(Esys=#Nsys) Do this in an analogous way to how we derived the Boltzmann

weights, except this time Taylor expand the entropy simultaneously in terms
of E and N (15 pts).

(c) Explain in words why the grand-canonical partition function is givenby Z(u, V,T) =
Z%“’:*O f dXe PHX)=1N) What is the dimension of X here? (10 pts)
0
(d) Show why (N) = kzT 13;@ (5 pts)
(e) Write a formula for the variance of N analogous to the one we derived for the
variance of E in the canonical ensemble (10 pts)

3. Three-state polymer model (55 pts). A simple model for a polymer in solution is
one where the angle between successive monomers can be in one of three states
(analogous to trans, gauche+, gauche-). As in the figure, we can call these three
options straight (s), left (1), right (r), and each link has length I. Let the energy
for each bend be equal to either €; = 0, €, = €, = €. This system is at constant
temperature (canonical ensemble).

Rlo—e\ R

Figure 1: Example microstate of a three-state polymer model with N = 13, N, = 3,
N; = 1.

(a) For a polymer with N monomers as in the cartoon, compute the partition
function. Do this by writing the partition function for each bend separately
and use the fact that all of the bends are independent (15 pts).

(b) Compute the average energy of the polymer (15 pts).

(c) Using the fact that the energy is connected to the number of bent links, write
the average number of straight, left, and right links (N;), (N;), (N;) (5 pts).

(d) Sketch a plot of how (N;), and (N;) depend on temperature, and show what
the limiting value is at 0 and infinite temperature on the sketch (10 pts).

(e) Compute the heat capacity of this polymer (10 pts).

4. Statistical mechanical perturbation theory (50 pts total). Sometimes in statistical
mechanics, we cannot exactly compute the partition function or sample easily for
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our system which has Hamiltonian H. However, we can solve the problem for a
similar Hamiltonian Hy. In this case, we can make a prediction for averages under
our true Hamiltonian based on information from our ‘easy’ Hamiltonian. For the
canonical ensemble, and observable O,

(@) Show that (O(X)) = (O(X)e BHE)=Ho(X))g /(e=BHE)=Ho(X)) ) where (-)
means an average with respect to H and (-)p means an average with respect
to Hamiltonian Hy. (10 pts)

(b) Just as you may have seen in Quantum Mechanical perturbation theory, some-
times we can write H(X) = Hy(X) + AV(X) where A is a constant. Similar
to the previous item, show that Z/Z; = (e~ PAV(X)), where Z and Z; are the
partition functions with respect to H and Hy respectively. (10 pts)

(c) Show that the difference in Helmholtz free energy between a system with
Hamiltonian H and one with Hy is AA = —kgT In({e PV (X))y). (5 pts)

(d) Expanding the exponential for small A and then using the Taylor series for
In(1 + x) show that for small A, AA ~ A(V (X))o + BA%/2[(V(X)?)o — (V(X))3].
This is part of what is called a cumulant expansion. (15 pts)

(e) An alternative way to find the difference between the state with A = 0and A =
1 is called thermodynamic integration. Note that Z for Hamiltonian H depends

explicitly on A. Show that A(A) = —kgTInZ(A) implies afs_g\)\) = (V(X)),.
And that therefore AA = fo X))rdA. (10 pts)
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