
NYU CHEM GA 2600: Statistical Mechanics
Midterm

Glen Hocky

October 28, 2019

Instructions: This midterm is open book/open note. No electronic devices besides a
calculator. Please write your name on each page and try to write your solutions legibly.
Try to use scratch paper for figuring things out.

The test has 3 parts worth 200 points. The test also has two bonus questions. Do not start

these unless you have tried all the other problems!

1. Einstein’s model for finding the heat-capacity of a crystal (50 points total + 50

bonus points). A famous problem in the early 1900’s was to understand the low
temperature behavior of the heat capacity of a solid. The first model for this was
proposed by Einstein in 1906, and although it is not quite right, we can reproduce
the Einstein model using what we know already from class.

The model is: There are N atoms in the crystal bonded harmonically to their lattice
site in 3D. Einstein supposed each of the 3N dimensions could be thought of as an
independent and distinguishable quantum harmonic oscillator. The energy levels of a
quantum harmonic oscillator are

E(n) = h̄w(n +
1
2
), with n = 0, 1, ... (1)

(a) Canonical ensemble Let’s find the heat capacity in the Canonical ensemble at
temperature T (and b = (kBT)�1).

i. Write the partition function for a single quantum harmonic oscillator (5
pts)

ii. Perform the sum over states and find a simple expression in terms of a
hyperbolic trig function, using info from the equation sheet (15 pts)

iii. What is the partition function of the full Einstein crystal, in terms of the
partition function of single quantum harmonic oscillator, and why (5 pts)
[Hint: this should be a very simple answer]
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iv. Show (10 pts) that the average energy of the Einstein crystal is

hEi = 3Nh̄w

2
1

tanh( bh̄w
2 )

(2)

v. Show (15 pts) that the heat capacity of the Einstein crystal is

CV = 3NkB

✓
bh̄w

2

◆2 1

sinh2( bh̄w
2 )

(3)

(b) Bonus - Microcanonical ensemble. Only if you have time Let’s find the heat
capacity in the Microcanonical ensemble. It turns out that the number of ways
do distribute q quanta of energy into N

0 = 3N oscillators is

W(N
0, V, E) =

(q + N
0 � 1)!

q!(N0 � 1)!
(4)

and the total energy of the system is

E =
3Nh̄w

2
+ qh̄w =

N
0
h̄w

2
+ qh̄w (5)

i. Using the fact that N
0 � 1 and Sterling’s approximation, find the simplest

expression you can for the entropy of this system (10 pts).

ii. Compute the temperature from the entropy, using the fact that 1
T
=

⇣
∂S

∂E

⌘

and
⇣

∂S

∂E

⌘
=

⇣
∂S

∂q

∂q

∂E

⌘
and for this system ∂q

∂E
= (h̄w)�1. (15 pts)

iii. Solve for q as a function of T, showing that q = N
0

ebh̄w�1 . (5 pts)
iv. Using this, find the energy as a function only of N and b (10 pts)
v. Using this function of the energy, find the heat capacity of the solid, which

should agree with Eq. 3. (10 pts)

2. Simulations (100 Points total).

(a) Molecular dynamics. Suppose you are simulating a particle in a harmonic
oscillator in 1d, with mass 1 and spring constant 1, so that

H(q, p) =
p

2

2m
+

kq
2

2
=

mv
2

2
+

q
2

2
(6)

i. Write Hamilton’s equations of motion for this system and simplify (10 pts)
ii. Suppose k = m = 1 and initially, q(0) = 1 and p(0) = 0. Manually per-

form 2 iterations of the Velocity Verlet algorithm [Tuckerman Page 100],
with time step Dt = 0.1, to find the position and momentum/velocity at
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times t=0.1 and 0.2. Show all your steps, and underline your final values at

these 2 times. (25 pts)
iii. Sketch the potential, and explain why your new q

0
s and v

0
s make physical

sense (10 pts).

(b) Parallel Tempearutre Replica Exchange Simulation. Suppose you can run
simulations of this same classical Harmonic oscillator Hamiltonian at constant
temperature. If you run simulation with m = k = 1 at 2 temperatures, kBT1 =
1 and kBT2 = 2, what is the acceptance rule for exchanging the following two
configurations (20 pts):

i. p1 = 1, q1 = 1
ii. p2 =

p
5, q2 = 1

(c) Monte Carlo Simulations. Consider doing a Monte Carlo simulation of the
Einstein model in the Canonical ensemble from Problem 1a. There are 3N
independent oscillators which start with occupation numbers (n1, n2, ..., n3N).

i. What is the Metropolis Acceptance Rule for changing the occupation num-
ber of an arbitrary site X from n

initial

X
! n

f inal

X
? (15 pts)

ii. For every material, we can fit an “Einstein Temperature” TE = h̄w/kB. For
example, TE(Li)=469.4 K and TE(Na)=191.9 K. Compute the acceptance
rate for increasing the occupation number of an arbitrary oscillator by one
(i.e. nX ! nX + 1) at T=300K and T=77K for both lithium and sodium
crystals [i.e. for 4 different cases] (20 pts).

3. Experiment Directed Simulation (50 points total + 30 bonus points). In the
seminar last week, Andrew White presented the Experiment Directed Simulation
method, for incorporating data directly into molecular simulations. That work
follows directly from what we learned in class.

Suppose our original simulation system has energy function U(~q), and f (~q) is an
observable function we are interested in measuring from simulation. We do an
experiment and find the correct value of h f i for our system is f̂ , which does not
quite agree with what we measure from simulation.

Then there exists a l⇤ such that h f il⇤ = f̂ , where

h f il =

R
d~q f (~q)e�bU(~q)+l f (~q)

Zl
(7)

and Zl =
R

d~qe
�bU(~q)+l f (~q).

(a) Rule for learning unknown parameters. We want to find the l that minimizes
the error in h f il. This is done by minimizing the observed squared error.
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Show that (25 pts):

∂

∂l
(h f il � f̂ )2 = 2(h f il � f̂ )Varl( f ) (8)

In practice, l is updated until the squared error is minimized, and l ! l⇤.

(b) Solving for l where error is small. If the error in h f i is small, then l⇤ will be
small. In this situation, it is possible to find an approximation for l⇤ from an
un-modified simulation (l = 0).
Without loss of generality, assume f̂ = 0 (we can always define g(~q) = f (~q)�
f̂ , such that ĝ = 0).

i. Start by assuming 0 = f̂ = h f il⇤ . Using Eq. 7, expand the exponential for
small l⇤ to first order in l⇤, to show (15 pts)

l⇤ = � h f il=0
h f 2il=0

(9)

ii. What do you get if you now expand to second order in l⇤ and solve for
l⇤? (10 pts)

(c) Bonus - Deriving the EDS probability density. Only if you have time (30

bonus pts). In the homework we showed you can derive the Boltzmann dis-
tribution by maximum entropy and Lagrange multipliers.
EDS is derived in the same way, but with distributions. Let P0(~q) be the
Boltzmann distribution (i.e. NVT-ensemble) and P(~q) is a new distribution
where the average of f is f̂ .
We can define the relative entropy S[P(~q)] = �

R
d~qP(~q) ln (P(~q)/P0(~q)) and

set the constraints
R

d~qP(~q) = 1 and
R

d~qP(~q) f (~q) = f̂ .
Maximize S subject to these constraints over the family of distributions P(~q)
and show that you get the distribution corresponding to Eq. 7.
To do this, you take the derivative with respect to the function P(~q), and you
will just need to know the following facts:

i. If f [g(x)] =
R

dxg(x)h(x), then d f

dg(x) = h(x).

ii. If f [g(x)] =
R

dx ln(g(x))g(x), then d f

dg(x) = 1 + ln(g(x)).
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