
Dive into 
computational 

physical chemistry

Lecture 2: Data 
organization and 

analysis

Glen Hocky
September 12, 2024



Reminder: Data is your most important 
resource

Some best practices
1. Keep your files organized

2. Label files (and inside of files) well – don’t use default generic names

3. Have a strategy for backups

4. Track changes



What is more valuable than data?

Everything you need to generate the data

◦ Code/software (what version if software?)

◦ Input data (e.g. protein structure)

◦ Parameter files (how should the software run)



Data analysis

For many projects, generating data is easy, what is the 
hard part in that case? 

- Finding something interesting in the noise

- Connecting results to underlying physical principles

- Presenting the data in a way that someone can rapidly 
understand your findings 

- This procedure is also critical to finding mistakes!



Plotting

◦ Making plots of data is pretty much your job

◦ There is a place for quick and dirty plots, which is to tell you if the simulation is running/working etc (see e.g. gnuplot)

◦ In this class, we will emphasize data aesthetics

◦ Every axis should be labeled, including units!

◦ Consider your ticks and tick-spacing

◦ Consider colors, and color palette. Mix symbols with colors to help with colorblind

◦ Are lines labeled, and are there legends?

◦ Should the plot have a title?

◦ Yes for your ongoing work and figures

◦ Generally no for a paper

◦ Scientifically, does your plot convey a message?

◦ Are the font, size ratio appropriate for your current task (paper, poster, talk)



Examples from me

ht
tp

s:
//

el
if

es
ci

en
ce

s.
or

g/
ar

ti
cl

es
/2

31
52

https://www.jbc.org/article/S0021-9258(21)00108-3/fulltext

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00425



Python and libraries

◦ Python is a computer language developed by Guido van Rossum in 1991. Python 3 was released in 2008.

◦ Python is the most popular programming language for general computational chemistry software and data analysis

◦ Python is an interpreted programming language, meaning it runs basically line by line

◦ Compiled programming languages take your whole code and turn it into an executable before running – these are generally faster 
and used where high performance is needed (C,C++,fortran)

◦ Python is especially popular due to its libraries (which can be easily installed from people’s individual codes or from a 

centralized server, e.g. Pypi.org)

◦ Example libraries:

◦ Numpy for numerical tasks

◦ Scipy, scikitlearn for scientific tasks like fitting, machine learning

◦ Mdtraj and MDAnalysis for general analyzing of MD results

◦ Matplotlib, seaborn for plotting



Jupyter notebooks

◦ Jupyter notebooks are an interactive environment for running python code

◦ They are especially nice for making plots, because the plots are embedded in the notebooks

◦ Results of analysis can be directly visualized

◦ There are downsides! 

◦ See e.g. this article, although these can be avoided https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-
4dc201e27086

◦ The primary problem is the nonlinear order of running code, so you might think something is working but it would not run 
if you did it again (Restart and run all is best practice to make sure)

◦ Best for exploration, in production, best to produce analysis scripts that produce data files (txt, database, pickle) that can be 
loaded and plotted with another script or notebook

◦ Also very good for creating tutorials and walk throughs of what you did

https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-4dc201e27086
https://towardsdatascience.com/5-reasons-why-jupyter-notebooks-suck-4dc201e27086


Visualization of molecular data
◦ The output of molecular dynamics simulations or electronic structure calculations is a set of atomic 

positions with associated data (such as electron density in the case of ES)

◦ Making pictures of this data graphically is crucial to understanding your system

◦ We will first take the example of biomolecular data – biomolecular structures are ‘solved’ by experiment 
and then deposited in the ‘Protein Data Bank’, using the PDB file format. 

◦ This format gives the positions of the atoms, but also the type of amino acids or other molecules that could be 
included, and information about the experiment

◦ PDB files can be parsed by software (e.g. in python) for analysis, and they can also be visualized by many 
softwares such as VMD, PyMol, Chimera, Molstar, etc. 

◦ PDB file can also be interpreted to give the molecular topology (bonds)

◦ MD Data is in the form of ‘trajectories’ – this is xyz vs time, and has other ‘binary’ formats

◦ We will try using VMD to visualize MD output



Today

◦ Fork github if you didn’t already, then clone your personal github

◦ git clone https://github.com/YOURID/comp-lab-class-2024 

◦ Try VMD as in the instructions

◦ If you need – do a python tutorial such as https://education.molssi.org/python_scripting_cms/ 

◦ Analyze energy data and structural data from a real MD simulation

◦ Have figures in jupyter notbook

◦ Push jupyter notebook to your cloned github

https://github.com/YOURID/comp-lab-class-2024
https://education.molssi.org/python_scripting_cms/


Next time

◦ What are molecular dynamics simulations

◦ Running batch jobs and interactive jobs on HPC

◦ Activity: setting up and running your own MD simulations in Gromacs


