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Abstract

Proteins are a class of biomolecules that are one of the most important building blocks of liv-

ing organisms. While it is common knowledge that the function of a protein is determined by its

three dimensional structure, in reality proteins exist in multiple metastable states with different

energy and specific functions. Molecular dynamics simulations is an approach by which we can

use computational modeling to characterize the proteins conformational ensemble with atomistic

detail. In practice, simple simulations do not allow us to access relevant conformations in acces-

sible amounts of conformational time. Enhanced sampling algorithms allow us to more rapidly

explore a system’s conformational ensemble, but typically requires guessing a set of collective co-

ordinates that, if biased, would allow us to observe all relevant configurations with an inference

of their correct likelihoods. In this work, I describe an approach for simultaneously characteriz-

ing and exploring conformational ensembles of proteins. Our approach relies on a probabilistic

clustering model called ShapeGMM, where configurations are used to learn a Gaussian mixture

model in cartesian coordinate space. In my work, we demonstrated that the technique Linear

Discriminant Analysis can be used to form a coordinate that separates states of a molecule and

allows us to sample between them using enhanced sampling. We then showed that we can train

a ShapeGMMmodel with samples generated by such a bias approach. This gives an approach by

which conformational ensembles can be quantitatively characterized. Finally, we show that this

allows us to perform iteration, in which case we can develop better coordinates by alternating

sampling and fitting.
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1 | Introduction

1.1 Molecular Dynamics and Rare Events

Molecular Dynamics (MD) simulations are a powerful tool for uncovering the functions of

biomolecules in cellular environments. Biomolecules—including proteins, nucleotides, lipids, and

carbohydrates—play essential roles in sustaining all living organisms. These macromolecules

exist in multiple metastable states, and their functions are strongly influenced by their spatial

configurations. Over the years, MD simulations have been extensively used to investigate a wide

range of biological processes, such as protein conformational transitions from inactive to active

state [1–4], drug binding to enzyme active sites [5–8], phase transitions in chemical systems at

critical temperatures [9–11], allosteric regulation [12–15] and the protein folding problem [16–

19].

In conventional MD studies, a system is described by a force field which defines the poten-

tial energy of interactions between all the atoms of the system. Each particle experiences forces

due to interactions with surrounding particles. By calculating these forces and solving Newton’s

equation of motion for a given initial condition, MD simulations generate an ensemble of system

configurations. This atomistic representation, along with the underlying dynamics, provides crit-

ical insights into microscopic mechanisms. For instance, designing an effective drug that binds

strongly to a protein’s active site requires a thorough understanding of the protein’s conforma-

tional ensembles. Data obtained from MD simulations help compute thermodynamic properties
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such as binding free energy differences, configurational entropies of metastable states, and free

energy barriers for protein folding and unfolding. Additionally, MD enables the calculation of ki-

netic properties, including state transition rates and drug residence times in enzyme active sites.

By bridging atomistic dynamics with macroscopic physical properties, MD simulations offer an

invaluable tool for understanding biomolecular behavior.

Despite the broad applicability of MD, certain challenges limit its efficiency. The computa-

tional expense of MD simulations increases rapidly with system size. While increased computa-

tional resources help mitigate this issue to some extent, there is a deeper challenge that remains.

One of the most critical limitations of conventional MD is the need to sample rare events.

Many biophysical processes exhibit this problem, where the system becomes trapped in a local

metastable basin, unable to reach the other states due to large energy barriers (>> 𝑘𝑇 ) sepa-

rating them in high-dimensional configurational space [20–22]. These transitions often occur

on millisecond to second timescales in real-time, which is far beyond the reach of standard sim-

ulations, especially for large biomolecular systems. Addressing these challenges requires the

development of enhanced sampling techniques and more efficient computational approaches to

extend the timescales accessible by MD simulations, thereby improving their predictive power

and applicability to complex biological systems.

1.2 Enhanced Sampling

In last few decades, scientists have come up with different enhanced sampling approaches

that is designed to deal with rare events and ensures better sampling of Free Energy Surface

(FES). Enhanced sampling algorithms can be briefly classified in two categories - (a) collective

variable (CV) based algorithms which depend on biasing few selected degrees of freedom that

is supposed to capture the slow modes of the system. And by enhancing the fluctuations of the

CVs, it forces the system out from the initial metastable state to explore the FES. Umbrella Sam-
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pling (US) [23], Metadynamics (MetaD) [20], Well Tempered Metadynamics (WT-MetaD) [24],

On-the-fly-Probability-Enhanced-Sampling (OPES) [25], driven Adiabatic Free Energy Dynam-

ics (d-AFED)/Temperature Accelerated Molecular Dynamics (TAMD) [26, 27] are some popular

CV based methods which are widely used to study biophysical systems. (b) Not CV based al-

gorithms which rely on enhancing sampling without adding any external biases such as Replica

Exchange Molecular Dynamics (REMD) [28], Replica Exchange with Solute Tempering (REST)

[29], or Transition Path Sampling (TPS) [30] are some well known techniques of this category.

In this thesis, I have mainly focused on studying transitions between different conformational

ensembles of proteins using only CV based enhanced sampling methods- WT-MetaD and OPES

Metadynamics (OPES-MetaD) to be specific. InWT-MetaD simulations, time dependent gaussian

hills are deposited along few chosen CVs with time. The amount of bias deposited at time t is

given by

𝑉 (𝑠, 𝑡) =
∑︁

𝑡 ′=0,𝜏,2𝜏,...,𝑡

𝑤 (𝑡 ′) exp
(
−

𝑑∑︁
𝑖=1

(𝑠𝑖 (𝒙, 𝑡 ′) − 𝑠𝑖)2
2𝜎𝑖

2

)
(1.1)

Where, 𝑠 = {𝑠1, 𝑠1, . . . , 𝑠𝑑} are CVs which are function of atomic coordinates. {𝜎𝑖2} are measure of

variance of each CV.𝑤 (𝑡 ′) = 𝑤0 exp (−𝑉 (𝑠, 𝑡)/𝑘𝐵Δ𝑇 ) is the time dependent height of gaussian hill

with 𝑤0 as the initial height and it decreases exponentially with time. Unlike the original meta-

dynamics, use of this scaling factor𝑤 (𝑡 ′) ensures the smooth convergence of free energy surface.

Δ𝑇 is an input parameter with the dimension of temperature that controls the effective sampling

temperature of CVs, T+Δ𝑇 . Rather than setting Δ𝑇 , one specifies a parameter called biasfactor,

𝛾 = 𝑇 + Δ𝑇 /𝑇 . 𝛾 controls the smoothness of sampled distribution. After sufficiently long time,

the FES can be computed from the total amount of bias deposited as 𝐹 (𝑠) = − 𝛾

𝛾−1𝑉 (𝑠, 𝑡 → ∞).

OPESmethod attempts to sample from a target probability distributionwhich is different from

Boltzmann’s distribution. In OPES-MetaD variant, the target distribution is the marginal prob-

ability distribution as a function of some CVs obtained from metadynamics, 𝑃𝑡𝑔 (𝑠) = [𝑃 (𝑠)]1/𝛾

where 𝑃 (𝑠) is the ground truth. It builds the bias potential on-the-fly that is implemented by
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reweighting the kernel density estimation of 𝑃 (𝑠). The bias at time t is given by

𝑉 (𝑠, 𝑡) = 𝑘𝐵𝑇
(𝛾 − 1

𝛾

)
log

(𝑃𝑡 (𝑠)
𝑍𝑡

+ 𝜖
)

(1.2)

where T is the temperature, 𝛾 is the biasfactor and 𝑃𝑡 (𝑠) is estimate of unbiased probability distri-

bution at time t. 𝑍𝑡 is a normalizing factor which is obtained by integrating over the explored CV

space in time t and 𝜖 is regularization parameter that controls the maximum amount of bias that

can be added to the system. In contrast to basin filling approach of metadynamics by dropping

gaussian hills with time, OPES quickly approximates the bias required to sample from the target

distribution. So, for OPES, there is an initial fast exploration phase of system followed by slower

refinement of details in the deposited bias which becomes stable after certain amount of time.

OPES-MetaD has proven to be highly efficient in studying large biophysical systems due to its

faster convergence and rapid sampling over conformational space. At convergence, FES can be

calculated from the deposited bias in same way as for metadynamics.

1.3 Methods for Analyzing Molecular Simulation Data

MD simulations of biophysical systems produce huge amount of high dimensional data, which

is essentially cartesian coordinates associated with all atoms in each time frame. All the config-

urations are sampled from an underlying Boltzmann’s distribution. This time continuous trajec-

tory characterizes different metastable states and transitions between those states which could

be explored in the given simulation time. If a system has 𝑁 atoms then the resulting configura-

tional space will be 3𝑁 dimensional and there are no possible ways to visualize metastable states

embedded in such high dimensions, this is also known as curse of dimensionality. To properly

analyze MD simulations we need to perform three operations: (1) Featurization, (2) Clustering

and (3) Dimensionality Reduction. These are described next.
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1.3.1 Featurization

Each configuration 𝑿 ∈ R𝐷 is a point in 𝐷 = 3𝑁 dimensional space. To represent a config-

uration in a lower dimension without losing too much information, we need to define a trans-

formation as 𝑿 : R𝐷 → R𝑑 , where 𝑑 << 𝐷 . There are many ways in which one can define

desired features, such as using internal coordinates (pairwise distances, angles and dihedrals) or

positions of selected group of particles (e.g. alpha carbons, heavy atoms, backbone atoms) etc.

While internal coordinates have been extensively used to describe a configuration due to their

translational and rotational invariance property but it can be overwhelming for large systems

because they scale as O(𝑁 2). On the other hand, use of atomic positions as features are a direct

representation of macromolecule in high dimensional space and it doesn’t overestimate system

size since it scales as O(𝑁 ). But atomic positions are dependent on reference frame and not in-

variant to translation or rotation. We can say that atomic positions might be an better option for

describing macromolecular configurations if translational and rotational invariance problem can

be dealt with proper weighted alignment techniques. In this work, we have demonstrated the

use of atomic positions as input features in both clustering and reducing dimensionality of data.

Alternatively, one can also use sophisticated dimensionality reduction approaches to transform

the data into lower dimensions and then use lower dimensional feature vector to describe the

system configurations.

1.3.2 Clustering algorithms

In MD simulations, configurations are sampled from Boltzmann’s distribution where proba-

bility peaks corresponding to different metastable states (high probability regions) are separated

from each other by large free energy barriers (low probability regions). Therefore naturally in

MD simulations, samples come mostly from metastable states and less from transition regions.

Clustering algorithms are powerful techniques that can classify these configurations generated
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fromMD simulation in a small number of groups/clusters based on some similarity measurement.

Each cluster is a group of configurations that represent a particular state of the system embed-

ded in high dimensional probability distribution of configurational space. The use of clustering

techniques to analyze MD simulation data is very common and it helps to identify key struc-

tural differences in metastable states and to explain the dynamics between them. There is a wide

range of clustering algorithms which can be classified in three major categories - (1) Partitioning

Clustering, (2) Density Based Clustering and (3) Kinetic Clustering.

In Partitioning schemes, clusters are represented as a group of configurations which are struc-

turally similar. Members belonging to different clusters are far away from each other. The parti-

tioning schemes can be further divided in four classes (a) Centroid based algorithms (k-means and

k-medoids) [31], (b) Neighbor based algorithms (nearest neighbor and common nearest neighbor)

[31], (c) Model based (Gaussian Mixture Models) [31] and (d) Hierarchial clustering (agglomera-

tive and divisive algorithms) [32].

k-means and k-medoids Algorithms

In the centroid based algorithms, each cluster is associated with a centroid that represents the

content of that cluster. Number of clusters is chosen a priori and a distance metric is defined to

measure similarity between data points. The samples are assigned to the clusters based on their

proximity to the centroids. The configurations within the same cluster exhibit low pairwise dis-

tances, while those in different clusters are separated by large distances. Additionally, a distance

cutoff is often applied that restricts the configurations that can be included in a specific cluster.

Essentially, these algorithms tend to partition the hyperplane into distinct groups, separated by

boundaries, similar to the structure of a Voronoi diagram. k-means and k-medoids are two most

popular algorithms which are used in many studies. Centroids for 𝑘 given clusters, 𝝁𝑐, 𝑐 = 1, . . . , 𝑘

are defined as the mean of configurations that belong to same cluster. A Loss function 𝐿(𝝁𝑐) is

defined as the sum of square distances of all the configurations to the mean of the cluster to
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which it is assigned. The objective is to find optimal cluster centers by minimizing 𝐿(𝝁𝑐). This

optimization problem can be solved in an iterative manner- 1. initialize by randomly selecting

any 𝑘 configurations as cluster means, 2. assign every sample in data set to a cluster to which it

is closest, 3. recalculate the new cluster means with new assignments and 4. repeat steps 2 and

3 until the cluster means don’t change anymore or converges within a threshold value. Due to

random initialization scheme of cluster means, quality of clustering strongly depends on the ini-

tial choice of configurations as cluster means and algorithm might need to be run multiple times

with different initial choices to achieve reasonable results. To choose the appropriate number of

clusters, one has to run the algorithm multiple times with increasing values of 𝑘 and make a plot

of 𝐿(𝝁𝑐) with 𝑘 to look for an elbow/kink which indicates a sharp positive change in the slope.

The computational cost associated with k-means algorithm scale as O(𝑀𝑘𝑙), where𝑀 is number

of configurations in the data and 𝑙 is number of iterations needed. Unlike k-means, in k-medoids

algorithm the centroid of a cluster is chosen as one of the cluster members which minimizes the

sum of square distances of all the members to the centroid. Hence, in k-medoids, cluster means

are true physical conformations of the system.

Neighbor based Algorithms

In neighbor algorithm, clusters are obtained iteratively based on the density of neighbors in

the feature space. There is no need to specify the number of clusters at the beginning, only a

nearest neighbor distance cutoff (𝑑𝑐𝑢𝑡 ) is required to evaluate the proximity of configurations to

each other. For a given data set, the list of nearest neighbors are calculated for all samples based

on the𝑑𝑐𝑢𝑡 , then the sample withmaximum number of neighbors represent a cluster center and all

its neighbors aremembers of that cluster. After finding first cluster, all themembers of that cluster

are taken out from the data set and continue the same process of finding neighborswith remaining

data, until all the samples are assigned to a cluster. This is a very simple and fast algorithm

because one doesn’t need to keep track of the entire distance matrix just keeping the record of
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list of neighbors for each sample would do the job. In common nearest neighbor algorithm, there

is one additional input parameter, called nearest neighbor number cutoff (𝑛𝑐𝑢𝑡 ) that allows one

configuration to be included in an existing cluster if its number of common nearest neighbors

compared to any of the samples from the same cluster is greater than or equal to 𝑛𝑐𝑢𝑡 . Due to this

inclusion property of common nearest neighbor algorithm, a cluster can keep expanding in size

until no more samples can be added to it. Hence, the resulting clusters represent the regions of

high data point density in feature space, separated by low probability regions.

Gaussian Mixtue Models

Gaussian Mixture Model (GMM) [33] attempts to approximate the probability distribution

of feature space as a sum of multivariate gaussians. The mean and covariance associated with

each multivariate gaussian represents the center and shape of a cluster. The configurations of

the same cluster are structurally close to each other, while members from different class are too

different. GMMhas beenwidely used to understand the high dimensional probability distribution

of complex data sets from various applications including MD simulations. For a given data matrix

𝑿𝑀×𝑑 , where 𝑀 is number of samples and 𝑑 is the dimension of feature space, the probability of

a configuration can be written as sum of 𝐾 clusters-

𝑃 (𝒙𝑖) =
𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ), ∀𝑖 = 1, . . . , 𝑀 (1.3)

Where 𝒙𝑖 is a vector of dimension d, corresponding to the 𝑖𝑡ℎ configuration in feature space,

𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ) is the 𝑗𝑡ℎ normalized, multivariate gaussian with mean 𝝁 𝑗 , covariance matrix 𝚺 𝑗 ,

and weights 𝜙 𝑗 (weights are normalized such that

∑𝐾
𝑗=1 𝜙 𝑗 = 1). Considering that all samples in

the data set arise from this probability density, we can ascribe the likelihood L to the data as -

𝐿 =

𝑀∏
𝑖=1

𝑃 (𝒙𝑖) =
𝑀∏
𝑖=1

( 𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 )
)

(1.4)

8



In maximum likelihood estimation, the log likelihood function for this probability distribution

function is given by-

ln (𝐿) =
𝑀∑︁
𝑖=1

ln

( 𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 )
)

(1.5)

The objective is to maximize the log likelihood value by optimizing these parameters {𝜙 𝑗 }, {𝝁 𝑗 }

and {𝚺 𝑗 } for K clusters. The Expectation Maximization (EM) algorithm [34] is widely used to

find the solutions for the maximum likelihood problem in an iterative manner. EM algorithm

starts with an initial guess {𝜙 𝑗 }, {𝝁 𝑗 } and {𝚺 𝑗 }. This can be achieved in multiple ways, such as

breaking the trajectory into 𝐾 parts or randomly choosing 𝐾 frames as cluster centers and assign

remaining samples to their closest cluster center based on some distancemetric (like RMSD). Then

in expectation step, the posterior probability for each configuration in the data set is computed.

Posterior probability for 𝑖𝑡ℎ configuration belonging to 𝑗𝑡ℎ cluster is given by,

𝛾𝑍𝑖 ( 𝑗) =
ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )∑𝐾
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
(1.6)

where 𝑍𝑖 ∈ (1, . . . , 𝐾) are the latent variables. Expectation step is followed by Maximization step,

where the values of the parameters {𝜙 𝑗 }, {𝝁 𝑗 } and {𝚺 𝑗 } are updated [31]. To learn the optimized

parameters one has to iterate between expectation andmaximization steps until the log likelihood

converges within some given threshold. In GMM, a data point is assigned to a cluster in which

it has largest log likelihood (i.e. largest value of 𝛾𝑍𝑖 ( 𝑗)). After the model has been trained with

the input data and parameters are learned, GMM can be used to predict the cluster assignments

of new data sets sampled from the same underlying probability distribution.

In density based clustering algorithms, the clusters are considered as existing peaks in a high

dimensional probability distribution. Clusters illustrate multiple metastable states in free en-

ergy landscape, separated from each other by high energy barriers. Samples that belong to same

cluster do not necessarily have similar structure because probability peaks can be asymmetric

in shape. Unlike partitioning schemes, here one doesn’t need to specify the number of clusters.
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It is particularly useful for analyzing MD simulation trajectories where sampled configurations

mostly come from free energy minimums and only few belong to the transition regions with

low probability density. The density is measured for each configuration in the data set followed

by finding out the correct probability peaks to which a particular sample belong. Some popular

density based algorithms are - Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN), Hierarchial Density-Based Spatial Clustering of Applications with Noise (HDBSCAN),

Density Peak Clustering etc.

DBSCAN and HDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [35] identifies clus-

ters by analyzing the density of data points within a specified neighborhood. It uses a distance

metric (typically Euclidean) to determine the number of neighbors within a given radius 𝜖 . If a

point has at least a predefined number of neighbors𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , it is classified as a core point.

The choice of 𝜖 and𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is crucial, as it directly affects the clustering outcome and must

be carefully tuned for each dataset. In DBSCAN, a point m is directly reachable from a core point

n if it lies within 𝜖 of n. A point m is reachable from n if there exists a chain of core points

connecting them. Notably, reachability is not symmetric— m being reachable from n does not

necessarily mean that n is reachable from m. To address this, DBSCAN introduces the concept

of density-connected points, where two points m and n are density connected if there exists a

third point s from which both m and n are reachable. The algorithm effectively identifies high-

density regions, treating them as clusters while labeling points in low-density areas as noise

points. A notable variant, HDBSCAN (Hierarchical DBSCAN) [36], has gained popularity in an-

alyzing molecular dynamics (MD) simulation trajectories. Unlike DBSCAN, HDBSCAN handles

clusters with varying densities, a common characteristic in data governed by the Boltzmann dis-

tribution. Additionally, HDBSCAN can uncover hierarchical structures within the data, making

it particularly useful for complex clustering tasks.
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Kinetic Clustering Algorithms

In kinetic clustering algorithms, the clusters are obtained based on kinetic proximity. The

members of same clusters are kinetically close, meaning they can easily interconvert to each

other in a short time scale, while members from two different clusters have relatively lower prob-

ability of transition. This is in accordance with MD simulations where a metastable state is an

ensemble of configurations that are geometrically similar and make quick transitions among each

other. But transitions between members of two metastable states which are separated by high

free energy barrier is very rare, and happens on a characteristic long time scale, hence kineti-

cally far away. Thus, Kinetic clustering techniques is an ideal approach to understand long time

scale behavior of a biomolecular system by breaking down its dynamics into a number of clus-

ters and probing transitions between them. MD simulation provides us with a time continuous

trajectory of configurations, 𝒙 (𝑡) = {𝒙0, 𝒙1, . . . , 𝒙𝑀 }. It is assumed that the entire trajectory of

the system can be described by a number of discrete microstates. Each microstate is a group of

configurations that are either kinetically or geometrically similar. To find the appropriate num-

ber of microstates from the data, one can start with an initial structural clustering like k-means,

nearest neighbor etc. Similar to Markov State Modeling (MSM) [37], a Transition Probability

Matrix (𝑻 ) is constructed, where 𝑇𝑖 𝑗 (𝜏) = 𝑝 (𝒙 𝑗 (𝑡 + 𝜏) |𝒙𝑖 (𝑡)) is the probability of transition from

state i to j in lag time 𝜏 . 𝑻 (𝜏) is a row stochastic matrix, where

∑
𝑗 𝑇𝑖 𝑗 = 1 and 𝑇𝑖 𝑗 ≥ 0,∀𝑖, 𝑗 . It

is assumed here, that the system is Markovian, which means the probability of current state de-

pends only on the previous state but not on the history of how it arrived at the current state, i.e.

𝑝 (𝒙 𝑗 , 𝑡 + 𝜏) = 𝑝 (𝒙 𝑗 , 𝑡 + 𝜏 |𝒙𝑖, 𝑡)𝑝 (𝒙𝑖) = 𝑇𝑖 𝑗 (𝜏)𝑝 (𝒙 𝑗 ), it is known as conditional independence prop-

erty. The dynamics of the system can be described by using transition probability matrix if and

only if the system in markovian. It is thereby also assumed that transition probabilities between

the states or the elements of 𝑻 (𝜏)) do not change with time, otherwise it won’t be valid. If 𝝅 (𝑡) is

a row vector representing the probabilities over microstates at time t , then time evolution of the
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probability distribution is written as, 𝝅 (𝑡+𝜏) = 𝝅 (𝑡)𝑻 (𝜏). The aim is find a perfect permutation of

the transition probability matrix such that it transforms into a almost block diagonal form where

elements within a block has much higher value than off-block elements. The eigen value problem

𝑻𝑽 = 𝑽𝚲 cab be solved to obtain 𝑽 as the eigen vector matrix and 𝚲 with eigen values. These

eigen values represent specific relaxation timescales for the system, 𝑡𝑖 = − 𝜏
ln 𝜆𝑖

. PCCA [38] and

PCCA+ [39] are two well known methods for performing the spectral clustering of the transition

matrix. Using the eigen vectors corresponding to positive and non zero eigen values, microstates

are further projected onto a reduced dimensional space. The final step involves grouping these

microstates into a small number of clusters that represent the actual metastable states and it can

be done using any geometric clustering. Choice of the lag time 𝜏 , is a system specific parameter

which controls the quality of kinetic modeling. It should be sufficiently large so that system loses

memory of its history but not too large that the system is no more markovian.

Comparing K-means, GMM and HDBSCAN

To illustrate how these differentmethdos compare, I here test three popular clusteringmethods-

K-means, GMM and HDBSCAN using Wine dataset from scikit-learn [40]. The Wine dataset

contains 178 samples with 13 features each, representing 3 types of wine [41]. For K-means and

GMM, we set the initial number of clusters to 3, while HDBSCAN does not require a predefined

cluster count. In case of K-means and GMM, I used the k-means++ initialization scheme, a toler-

ance value of 0.0001, a maximum of 300 iterations, and ran 20 times to find the best fit. For HDB-

SCAN, we set the minimum cluster size to 8 and used the Euclidean distance metric. Figure 1.1

illustrates the clustering results, where data points are projected onto two dimensions using the

first two LDA components (LD1 and LD2). The samples are color-coded based on their true class

labels (ground truth) and the predicted cluster assignments from each method. Among the three

methods, K-means performed best, accurately assigning most samples to their correct clusters.

GMM successfully identified two clusters but struggled with the third. HDBSCAN exhibited a
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Figure 1.1: Comparison of Clustering Algorithms. Wine data set from UC Irvine Machine Learning
Repository benchmark datasets, is used to analyze the performance of K-means, GMM and HDBSCAN.
The data points are projected along first two LDA components and colored according to their cluster
assignments. Ground truth represents true class labels for data points.

similar trend, grouping the data into two clusters while designating the remaining samples as

noise points. The effectiveness of a clustering algorithm is highly dependent on the complexity

and characteristics of the dataset. While K-means performed well in this case, there are scenarios

where GMM or HDBSCANmight be more suitable. To quantify clustering performance, we com-

puted the Silhouette Score [42], a metric that evaluates similarity of samples is to its own cluster

compared to other clusters. The score ranges from -1 to 1, where 1 indicates well separated clus-

ters, values near 0 suggest closely spaced but distinct clusters, and -1 represents poor clustering
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results. The scores are 0.285, 0.250 and 0.098 respectively for k-means, GMMandHDBSCAN. This

simple comparison on the Wine dataset aims to demonstrate how different clustering algorithms

operate rather than to declare a definitive best method.

1.3.3 Dimensionality Reduction Techniques

Dimensionality reduction techniques are widely used in analyzing MD simulations by pro-

jecting the data from a high dimensional space to a much lower dimension that can still retain

relevant information about the system. The underlying idea is to transform the data matrix 𝑿𝑛×𝑑

into a new representation 𝑿
′
of dimension 𝑛 × 𝑘 , where 𝑛 is number of samples and 𝑘 << 𝑑 .

Quality of this transformation depends on how much information from high dimensional space

can be preserved in reduced dimension. Dimensionality reduction methods are necessary for

visualizing high dimensional data in a lower dimension by means of projection and very often

used as compulsory preliminary step in clustering algorithms to obtain distinct states from MD

simulation data. In some cases, the transformed coordinates can also be used as collective vari-

ables in enhanced sampling simulations to characterize transitions between metastable states

and to enhance the fluctuations along slow degrees of freedom thereby increasing chances of

rare event sampling. There are many dimensionality reduction algorithms that have been used

in MD studies; they can be separated in two major categories - (1) Linear Dimensionality reduc-

tion techniques such as Linear Discriminant Analysis (LDA) [31], Principal Component Analysis

(PCA) [31], Time lagged Independent Component Analysis (t-ICA) [43]. These methods aim to

find a optimal projection by using a linear combination of input features, along which the data

can be best understood. (2) Non-linear dimensionality reduction techniques such as t-distributed

Stochastic Neighbor Embedding (t-SNE) [44], Uniform Manifold Approximation and Projection

(UMAP) [45], diffusion maps [46], Isomap [47], Kernel PCA [48] etc. They focus on finding the

best low dimensional embedding as some non linear complex functions of input features, that

can efficiently describe both the local and global structures in the data set.
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Principal Component Ananlysis

Principal Component Analysis (PCA) is a very simple and popular dimensionality reduction

technique that has been used to analyze different types of data. PCA aims to find a set of orthog-

onal coordinates (called Principal Components or PCs) in the direction of maximum variance of

the data set. PCs are also frequently used as collective variables in enhanced sampling simula-

tions of biomolecules. For a given data set𝑿𝑀×𝑑 , where𝑀 is number of samples in the data and 𝑑

is number of features that describe a single configuration in high dimensional space, first the data

set is centered by subtracting the average, 𝑿𝑐 = 𝑿 −𝝁, where 𝜇 =
∑𝑀
𝑖=1 𝒙𝑖 is a vector representing

feature means. Centering the data makes sure that PCs will be translationally invariant. Then the

covariance matrix is computed as, 𝑪 = 1

𝑀
𝑿𝑐

𝑇𝑿𝑐 , which has dimension of 𝑑 ×𝑑 . By diagonalizing

the covariance matrix as 𝑪𝒀 = 𝒀𝚲, we can get the eigen vectors 𝒚𝑖,∀𝑖 = 1, . . . , 𝑑 that form the

columns of matrix 𝒀 . The eigen vectors are PCs which are then arranged according to decreasing

order of eigen values (𝜆1 > 𝜆2 > · · · > 𝜆𝑑 ). The component with largest eigen value is called PC1

that always incorporates maximum amount of variance in the data set. If one decides to use first 𝑗

PCs, then the transformed data is given by, 𝑿
′
= 𝑿𝑐𝑾 , where𝑾 =

[
𝒚1,𝒚2, . . . ,𝒚 𝑗

]
𝑑× 𝑗 . In practice

𝑗 << 𝑑 , so that dimensionality of the data is reduced significantly. For example, to capture 90%

of total variance of the data set in low dimensional space, the number of PCs is chosen such that,∑ 𝑗

𝑎=1
𝑣𝑎 ≥ 0.90 where 𝑣𝑎 =

𝜆𝑎∑𝑑
𝑏=1

𝜆𝑏
, is called explained variance ratio that gives the amount of

variance captured by each component.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised classification technique. It is mainly used

for dimensionality reduction and classification problems inMachine Learning (ML). It reduces the

dimensionality of the data by projecting them in a direction alongwhich different clusters are best

separated from each other. For K clusters, LDA provides 𝐾 − 1 linearly independent projections
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of the input data, among which the one with largest eigen value is always the best to capture

patterns in data. LDA finds such linear transformation by maximizing between the class scatter

matrix (
˜𝑺𝑏) and minimizing within the class scatter matrix (

˜𝑺𝑤 ) in the projected space. Unlike

PCA, here the data set is labeled, that means each configuration in the data set is a member of a

particular class. For K classes, between the class scatter matrix of feature space is defined as,

𝑺𝑏 =
𝐾∑︁
𝑖=1

𝑛𝑖 (𝝁𝑖 − 𝝁) (𝝁𝑖 − 𝝁)𝑇 (1.7)

and within the class scatter matrix as.

𝑺𝑤 =

𝐾∑︁
𝑖=1

∑︁
𝑗∈𝑛𝑖

(𝒙 𝑗 − 𝝁𝑖) (𝒙 𝑗 − 𝝁𝑖)𝑇 (1.8)

Here, 𝑀 is total number of samples in the data set, 𝑛𝑖 is number of samples in cluster 𝑖 , 𝝁𝑖 =

1

𝑛𝑖

∑
𝑗∈𝑛𝑖 𝒙𝑖 , is the mean of features for 𝑖𝑡ℎ cluster and 𝝁 = 1

𝑀

∑𝑀
𝑖=1 𝒙𝑖 is the global mean of the entire

data set. There is a linear dependence of the cluster means, directly related to the definition of

global mean by,

∑𝐾
𝑖=1 𝑛𝑖 (𝝁−𝝁 𝒊) = 0. 𝑺𝑏 describes the spread of the cluster means from global mean

and 𝑺𝑤 captures the variance of the data within a class. Here the objective is to find a optimal

linear transformation 𝑮 which will transform the data as 𝒚𝑖 = 𝑮𝑇𝒙𝑖 , such that classes are best

separated in projected space. The fisher’s objective function is defined as, 𝐽 (𝑮) = ˜𝑺𝑏
˜𝑺𝑤
, that has to

be maximized for an optimal 𝑮∗
. It can be shown that, 𝐽 (𝑮) can be expressed in terms of scatter

matrices 𝑺𝑏 and 𝑺𝑤 in feature space,

𝐽 (𝑮) = 𝑮𝑇 𝑺𝑏𝑮

𝑮𝑻 𝑺𝒘𝑮
(1.9)

this is also known as Rayleigh quotient. Maximizing this ratio with respect to 𝑮 is equivalent to

solving the generalized eigen value problem, 𝑺𝑏𝑮 = 𝜆𝑺𝑤𝑮 . If 𝑺𝑤 is non-singular, which means

the inverse (𝑺𝑤
−1
) exists, it is reduced to a simple eigen value problem. Solving this eigen value
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problem, returns 𝐾 −1 linearly independent eigen vectors with non-zero eigen values. For 𝐾 = 2,

only a single LDA coordinate is obtained and it is given as,

𝒚(𝒙) = (𝝁1 − 𝝁2)𝑇
𝚺1 + 𝚺2

𝒙 (1.10)

LDA coordinates have also been used as potential collective variable in enhanced sampling sim-

ulations. It has been shown that biasing LDA coordinate can promote better sampling of FES

which results in faster convergence of free energy path. Different versions of LDA method have

also been proposed such as deep-LDA [49, 50], HLDA (harmonic LDA) [51, 52].

t-Distributed Stochastic Neighbor embedding

It is a non linear dimensionality reduction algorithm, primarily used for visualizing high di-

mensional complex manifolds of data in lower dimensions (typically 2D or 3D). t-SNE is very

effective in preserving both local and global structures in the data. It operates by translating sim-

ilarities among data points in high dimensional space into probabilities and then mapping them

onto a lower dimensional representation while preserving these probabilities. For a given data

set 𝑿𝑀×𝑑 , pairwise similarities are calculated as,

𝑝 𝑗 |𝑖 =
exp

(
−



𝒙𝑖 − 𝒙 𝑗


2/2𝜎𝑖2)∑

𝑘≠𝑖 exp

(
− ∥𝒙𝑖 − 𝒙𝑘 ∥2/2𝜎𝑖2

) (1.11)



𝒙𝑖 − 𝒙 𝑗


2

is the euclidean distance between points 𝒙𝑖 and 𝒙 𝑗 . 𝑝 𝑗 |𝑖 is the conditional probabil-

ity, that 𝒙𝑖 would pick 𝒙 𝑗 as its neighbor. 𝑝 𝑗 |𝑖 is described by a gaussian centered at 𝒙𝑖 , it has

higher values for the data points which are nearby and very low values for those which are

widely separated. The denominator in the above exxpression is a normalization factor that en-

sures

∑
𝑗≠𝑖 𝑝 𝑗 |𝑖 = 1. And 𝜎𝑖 is the variance of the gaussian centered at 𝒙𝑖 , values of them are

chosen such that perplexity matches with the user specified value. Perplexity is a hyperparam-
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eter in t-SNE algorithm, it is defined as, 𝑃𝑒𝑟𝑝 (𝑃𝑖) = 2
𝐻 (𝑃𝑖 )

. 𝐻 (𝑃𝑖) =
∑
𝑗≠𝑖 𝑝 𝑗 |𝑖 log

𝑝 𝑗 |𝑖
2

, is called the

Shannon entropy and 𝑃𝑖 is the set of all conditional probabilities {𝑝 𝑗 |𝑖,∀𝑗 ≠ 𝑖}. 𝑃𝑒𝑟𝑝 controls the

balance between preserving local and global structures in the data. While a low value of 𝑃𝑒𝑟𝑝

makes t-SNE focuses on very local structure in the data, increasing its value can change the be-

havior by considering a large number of neighbors thereby capturing global structure better. It

has been shown that, a 𝑃𝑒𝑟𝑝 value of 5 to 50 works substantially good for any kind of data sets

[44]. In practice, for each data point 𝒙𝑖 , t-SNE performs a binary search to find the value of 𝜎𝑖

that satisfies, 𝑃𝑒𝑟𝑝 (𝑃𝑖) = 𝑃𝑒𝑟𝑝𝑡𝑎𝑟𝑔𝑒𝑡 . The joint probability 𝑝𝑖 𝑗 is then symmetrized as,

𝑝𝑖 𝑗 =
𝑝 𝑗 |𝑖 + 𝑝𝑖 | 𝑗

2𝑀
(1.12)

In the lower dimensional space, the Student t-distributionwith one degree of freedom (also known

as Cauchy distribution) is used to model the pairwise similarities between the data points. The

joint probability distribution is defined as,

𝑞𝑖 𝑗 =

(
1 +



𝒚𝑖 −𝒚 𝑗


2)−1∑

𝑘≠𝑙

(
1 + ∥𝒚𝑘 −𝒚𝑙 ∥2

)−1 (1.13)

where, {𝒚𝑖 ∀𝑖 = 1, . . . , 𝑀} are the configurations in projected space. The use of Cauchy dis-

tribution in projected space instead of gaussian (like in case of SNE), alleviates the problem of

crowding, where the data points from different clusters get very close to each other when pro-

jected in 2D or 3D from very high dimensional space [44]. The aim is to find the optimal mapping

such that pairwise similarity in the high dimensional space can be perfectly preserved in lower

dimensional representation. The cost function is defined using Kullback-Leibler divergence (KL)

as,

𝐶 = KL(𝑃 | |𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
. (1.14)
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Cost function gives a measure of overlap between probabilities 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑀 .

It has the property that 𝑝𝑖 𝑗 = 𝑝 𝑗𝑖 and 𝑞𝑖 𝑗 = 𝑞 𝑗𝑖∀𝑖, 𝑗 . The cost function is minimized with respect

to 𝒚𝑖 using gradient descent method. The gradient of the cost function is given as [44],

𝛿𝐶

𝛿𝒚𝑖
= 4

∑︁
𝑗

(𝑝𝑖 𝑗 − 𝑞𝑖 𝑗 ) (𝒚𝑖 −𝒚 𝑗 )
(
1 +



𝒚𝑖 −𝒚 𝑗
2



)−1
(1.15)

After initializing, the projected variables {𝒚𝑖} form a multivariate gaussian distribution with zero

mean and unit covariance, the embeddings are updated iteratively using the equation below,

𝒚𝑖
(𝑡) = 𝒚𝑖

(𝑡−1) + 𝜂 𝛿𝐶
𝛿𝒚𝑖

+ 𝛼 (𝑡) (𝒚𝑖 (𝑡−1) −𝒚𝑖
(𝑡−2)) (1.16)

where 𝜂 is learning rate and 𝛼 (𝑡) is momentum term. So, the hyperparameters for t-SNE are 𝑃𝑒𝑟𝑝 ,

𝜂, 𝛼 and number of iterations. This algorithm is efficient in understanding the patters or clusters

of complex manifolds but computationally very expensive (scales as O(𝑀2)), especially for large

data sets.

Comparing PCA, LDA and t-SNE

To illustrate how the dimensionality reductionworks, here I conducted a comparative analysis

of three popular dimensionality reduction techniques— PCA, LDA, and t-SNE using the MNIST

dataset with scikit-learn [40]. The MNIST dataset [53] consists of 70,000 handwritten digits (0–9),

each represented as a 28×28 pixel image with 784 features. It is widely used in machine learning

to benchmark various methods due to its high-dimensional and complex nature. For simplicity,

we selected only three classes randomly (2, 5, and 9), resulting in a dataset of approximately

20,000 samples. The input data was first rescaled such that it has zero mean and unit variance

for features. Figure 1.2(A) presents the projection of these samples onto two dimensions, with

points color-coded by class. Among the three methods, t-SNE performed the best, effectively
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A

B

Figure 1.2: Comparison of Dimensionality Reduction techniques. Analyzed performance of PCA, LDA
and t-SNE on a subset of the MNIST dataset (digits 2, 5, and 9). (A) Scatter plots showing the projections
of the data points along first two components from each method. Data points are colored according to
their true digit class labels. (B) Histogram of three classes along the first component in each case.

identifying and distinguishing clusters in lower dimensions with minimum overlap between the

classes. LDA performed quite well, particularly considering that it is a linear method and com-

putationally less expensive than t-SNE. This is expected, as LDA is a supervised technique that

maximizes class separation while minimizing variance within a class. PCA, on the other hand,

struggled to separate clusters, which aligns with its nature as an unsupervised method that fo-

cuses on maximizing variance rather than class separability. Figure 1.2(B) further illustrates how

the samples are distributed along the first component in each method. Notably, the first linear

discriminant (LD1) in LDA provided a lot better smooth separation between clusters compared

to the first principal component in PCA or t-SNE’s first axis. This also suggests that LD1 could

be particularly useful in identifying state transitions between metastable states in biomolecular

simulations.
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2 | Reaction coordinates for conformational

transitions using Linear Discriminant

Analysis on Positions

This chapter has been adapted from Ref. [54]

2.1 Introduction

A large class of enhanced sampling techniques work by biasing a system to explore along

a low dimensional set of collective variables (CVs) [55]. These methods allow us, in principle,

to use the known applied bias to reconstruct the free energy landscape in that low dimensional

space. In practice, the choice of the CVs is crucial, with an ideal set of CVs allowing the system

to explore all relevant states within available simulation time [55]. Recently, extensive effort

has been invested in using a variety of machine learning approaches, from very simple to very

sophisticated, to determine optimal coordinates for sampling from molecular dynamics (MD)

simulation data (Refs. [49, 51, 52, 56–72] provide a representative but not exhaustive sample).

One commonly encountered challenge is to compute the free energy path of a transition be-

tween two states along a linear dimension that chemists term a reaction coordinate (RC). For

a macromolecule such as a protein, the two states could be configurations for which we have

known structures (e.g. the PDB structure of a protein solved with and without a bound ligand),
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or processes for which one state is known and the other can be at least qualitatively defined (e.g.

folding/unfolding or binding/unbinding). If a long MD trajectory containing multiple transitions

between these states is available, then reaction coordinates could be trained based on the idea

that we want to enhance sampling along the slowest modes in the system [50, 58, 62, 65, 66, 73].

However, having this data is rare, in which case one can try iterative enhanced sampling and

learning reaction coordinates with the goal of maximizing the number of transitions between the

two states in a fixed amount of simulation time [58, 59, 63, 65, 67, 74].

An alternative approach which has shown some success is to train reaction coordinates based

on short simulations within the two states, and use a method that produces a coordinate repre-

senting the difference between the two sets of data. Linear dimensionality reduction techniques

such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are the

simplest approaches for combining a large set of variables that describe a system of interest to

produce a small set of CVs that characterize the available data. While PCA, which produces co-

ordinates that capture the most variance in the data, has been used to promote exploration in

enhanced sampling simulations, LDA seems to hold more promise as an RC since it is a super-

vised approach designed to maximally separate different labeled classes of data (i.e. reactants and

products). We describe LDA in full detail in the next section. In one study, Mendels et al. [52]

produced a modified approach to LDA termed harmonic LDA (HLDA, because the covariance

matrices in the two different states of interest are combined by a harmonic average rather than

a simple sum), and in that work and subsequent ones,[51, 61] combined it with Metadynamics

(MetaD) to effectively enhance sampling between two states in several different systems. Later, a

neural network was used to combine features before training LDA vectors to produce the reaction

coordinate [49].

In the prior examples of reaction coordinate design for free energy sampling of biomolecules

that we are aware of, the input features to the method were internal coordinates, or a function of

internal coordinates, for the molecule(s) of interest—for example, distances, angles, and dihedrals.
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Often, these could be CVs based not on atomic positions directly, but on coarse-grained (CG) rep-

resentations of the biomolecule, such as the distance between the centers of masses (COMs) of

two different domains, or the distance between the COM of a ligand and certain atoms in its bind-

ing pocket. This is not surprising, because these often correspond to our physical intuition about

the biomolecular reaction coordinate. Moreover, internal coordinates are invariant to translation

and rotation of the molecule, and thus bias forces applied to these coordinates do not depend on

the position or orientation of the molecule.

Recently, we presented atomic coordinates as an alternative set of features to use in the con-

text of clustering biomolecular data [75]. Atomic coordinates of a subset of atoms, or of beads

corresponding to a CG representation of a molecule, offer an alternative to internal coordinates

with the advantage that there is little choice in selecting the features to use. Using a protein as an

example, we need only make the standard choice between C𝛼 atoms, backbone, all heavy atoms,

and so on. Moreover, only 3𝑁 − 6 atomic coordinates essentially describe the state of a biomolec-

ular system with 𝑁 important atoms (but ignoring contributions of solvent, salt, etc.), whereas

use of internal coordinates often results in an over-determined set of features, such as all 𝑂 (𝑁 2)

pairs of distances. In Ref. [75] we developed a procedure for clustering molecular configurations

into a Gaussian mixture model (GMM) using atomic positions that overcomes challenges of ori-

entational dependence that prevented their use earlier, as described below. Because a Gaussian

mixture model in positions is a natural way to coarse-grain a free energy landscape,[75–78] with

locally harmonic bins around metastable states, the resulting clustering is a physically appealing

definition of the “states” a molecule can adopt.

However, our Gaussian mixture model still relies on a very high (3𝑁 − 6) dimensional repre-

sentation of our molecule. Given that the output of our clustering algorithm is a set of states each

defined by a multivariate Gaussian distribution, LDA is a natural approach to produce a low di-

mensional representation of our data with large separation between states. In this work, we first

apply LDA to the folded and unfolded states determined from shapeGMM clustering of a long
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unbiased MD trajectory of a fast-folding protein, and demonstrate that it produces a physically

reasonable ordering of states from folded to unfolded. We then show that this coordinate is a

“good” reaction coordinate because the position of the barrier separating folded and unfolded is

very close to the location where the system is equally likely to proceed to folded or unfolded (in

terms of a committor function to be defined below). We implement this position LDA coordinate

in the PLUMED sampling library, and demonstrate that biased sampling along this coordinate

can accelerate transitions between the folded and unfolded states, and produce a qualitatively

similar free energy surface as compared to the unbiased trajectory in 3% of the simulation time,

without any additional tuning of the CV. Finally, we train a position LDA coordinate on an achi-

ral helical system where data is only available in the left and right-handed states, and show that

this coordinate also allows us to readily sample between the two states, despite there being no

information about the transition provided during training.

2.2 Theory and Methods

2.2.1 Molecules in Size-and-Shape Space

Consistent with our previous work on structural alignment and clustering,[75] we consider

structures from aMD simulation to be associated with Gaussian distributions in atomic positions.

Structures are represented by 𝑁 particles (a subset of atoms) using a vector 𝒙 of dimension 𝑁 × 3

which is a member of an equivalence class,

[𝒙𝑖] = {𝒙𝑖𝑹𝑖 + 1𝑁 ®𝜉𝑇𝑖 :
®𝜉𝑖 ∈ R3, 𝑹𝑖 ∈ SO(3)}, (2.1)

where
®𝜉𝑖 is a translation in R3

, 𝑹𝑖 is a rotation R3 → R3
, and 1𝑁 is the 𝑁 ×1 vector of ones. [𝒙𝑖] is

a point in size-and-shape space[79] which has dimension 3𝑁 − 6 and is defined as 𝑆Σ3

𝑁
= R3𝑁 /𝐺

where𝐺 = R3×SO(3) is the group of all rigid-body transformations for each frame with elements
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𝒈 = ( ®𝜉, 𝑹).

Within the shapeGMM framework, the probability density of particle positions is assumed to

be a Gaussian mixture,

𝑃 (𝒙𝑖) =
𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖𝒈𝑖, 𝑗 | 𝝁 𝑗 , 𝚺 𝑗 ), (2.2)

where 𝑁 (𝒙𝑖𝒈𝑖, 𝑗 | 𝝁 𝑗 , 𝚺 𝑗 ) is the 𝑗th normalized, multivariate Gaussian with mean 𝝁 𝑗 , covariance

matrix 𝚺 𝑗 , and weight 𝜙 𝑗 (the weights are normalized such that

∑𝐾
𝑗=1 𝜙 𝑗 = 1). 𝒈𝑖, 𝑗 is the element

of 𝐺 that minimizes the Mahalanobis distance between 𝒙𝑖 and 𝝁 𝑗 . Iterative determination of 𝒈𝑖, 𝑗

and 𝝁 𝑗 is performed in a Maximum Likelihood procedure [75].

In the current work, we will consider LDA coordinates learned using data from only two

states. Additionally, we will only consider “weighted” alignment of particle positions, which

equates to using a Kronecker product covariance (where Σ 𝑗 = Σ𝑁 ⊗𝐼3, for Σ𝑁 the𝑁×𝑁 covariance

of particle positions) in defining the Mahalanobis distance between frame and average structure

as described in detail in Ref. [75].

2.2.2 Dimensionality Reduction using Linear Discriminant Analysis on

Particle Positions

Wepropose to use LDA directly on aligned particle positions as a reaction coordinate. LDA for

two states produces the linear model with the maximal inter-average variance while minimizing

intra-cluster variance[31]. For𝐾 different clusters, this is achieved by first computing the within-

cluster scatter matrix,

𝑺𝑤 =

𝐾∑︁
𝑖=1

∑︁
𝑗∈𝑁𝑖

(𝒙 𝑗 − 𝝁𝑖) (𝒙 𝑗 − 𝝁𝑖)𝑇 , (2.3)

and the between-cluster scatter matrix,

𝑺𝑏 =
𝐾∑︁
𝑖=1

(𝝁𝑖 − 𝝁) (𝝁𝑖 − 𝝁)𝑇 , (2.4)
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where 𝝁𝑖 is the average structure of cluster 𝑖 and 𝝁 is the global average. The simultaneous min-

imization of within-cluster scatter and maximization of between cluster scatter can be achieved

by finding the transformation 𝐺 that maximizes the quantity

Tr

(
(𝐺𝑇 𝑺𝑤𝐺)−1𝐺𝑇 𝑺𝑏𝐺

)
. (2.5)

This maximization can be achieved through an eigenvalue/eigenvector decomposition but such

a procedure is only applicable when 𝑺𝑤 is non-singular. The LDA method was reformulated in

terms of the generalized singular value decomposition (SVD) [80] extending the applicability of

the method to singular 𝑺𝑤 matrices such as those encountered when using particle positions.

In addition to employing the SVD solution to the LDA approach, care must be taken in how

particle positions are aligned when performing LDA. This is evident when one considers the

scatter matrices in (2.3) and (2.4). The values and null spaces of these scatter matrices will de-

pend on the specific alignment procedure chosen. There are three obvious choices for structural

alignment prior to LDA: (1) alignment of each frame to its respective cluster mean/covariance, (2)

alignment to one cluster or another, and (3) alignment to a global average. The first choice will

lead to scatter matrices with different null spaces for each cluster making their addition in (2.3)

unsatisfactory. Alignment to a cluster mean will yield consistent null spaces for each cluster but

requires distinct alignment reference and global average structures. Additionally, aligning to a

cluster mean yields to an undesirable ambiguity (and asymmetry) in the choice of cluster. Align-

ment to a single global average overcomes all of these issues and, as we show in the Appendix 2.6,

yields a sampling coordinate that is at least as good as alignment to a cluster mean for the systems

tested here.

The result of an LDA procedure on two labeled states will be a vector, 𝒗, of coefficients that

best separate the two states. These vectors are similar in nature to the eigenvectors from PCA, a

procedure more familiar to the bio-simulation field.
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2.2.3 Biasing a linear combination of positions

The value of the LDA coordinate after this procedure is a dot product of the vector 𝒗 with the

atomic coordinates 𝒙 − 𝝁. When computing this value on the fly within an MD simulation, we

need to consider the value of [𝒙 (𝒕)], the equivalence class of the position at time 𝑡 , translated and

rotated to a reference {𝝁, 𝚺}.

Therefore, to compute the value of the LDA coordinate 𝑙 , we first translate 𝒙 (𝒕) by ®𝜉 (𝑡) =

1

𝑁

∑𝑁
𝑖=1 ®𝑥𝑖 (𝑡) − 1

𝑁

∑𝑁
𝑖=1 ®𝜇𝑖 (𝑡), the difference in the geometric mean of the current frame and that

of the reference configuration. Then, we compute 𝑹 (𝑡), the rotation matrix which minimizes the

Mahalanobis difference between 𝒙 (𝒕) − ®𝜉 and 𝝁, for a given 𝚺, as described in Ref. [75]. Finally,

we compute

𝑙 (𝒙) = 𝒗 ·
(
𝑹 · (𝒙 (𝑡) − ®𝜉 (𝑡)) − 𝝁

)
(2.6)

By definition, 𝑙 (𝝁) = 0.

To apply bias forces to this coordinate, we must be able to compute ∇𝑙 (𝒙(t)). Because of the

inclusion of the optimal rotation process by SVD, it is non-trivial to compute this analytically,

and we instead compute derivatives numerically.

2.2.4 Enhanced sampling with OPES-MetaD

Enhanced sampling simulations on LDA coordinates were performed using Well-tempered

Metadynamics (WT-MetaD), andOn the Fly Probability Enhanced Sampling-Metadynamics (OPES-

MetaD) as implemented in PLUMED [25, 81–83].

WT-MetaD works by adding a bias formed from a history dependent sum of progressively

shrinking Gaussian hills [24, 84]. The bias at time 𝑡 for CV value 𝑄𝑖 is given by the expression

𝑉 (𝑄𝑖, 𝑡) =
∑︁
𝜏<𝑡

ℎ𝑒−𝑉 (𝑄𝑖 ,𝜏)/Δ𝑇𝑒−
𝑄 (𝒙 (𝜏 ) )−𝑄𝑖 )2

2𝜎2 , (2.7)
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whereℎ is the initial hill height, 𝜎 sets the width of the Gaussians, and Δ𝑇 is an effective sampling

temperature for the CVs. Rather than setting Δ𝑇 , one typically chooses the bias factor 𝛾 = (𝑇 +

Δ𝑇 )/𝑇 , which sets the smoothness of the sampled distribution [24, 84]. Asymptotically, a free

energy surface (FES) can be estimated from the applied bias by 𝐹 (𝑄) = − 𝛾

𝛾−1𝑉 (𝑄, 𝑡 → ∞) [84,

85] or using a reweighting scheme [84, 86].

In contrast to the use of sum of Gaussians in traditional MetaD, OPES-MetaD applies a bias

that is based on a kernel density estimate of the probability distribution over the whole space,

which is iteratively updated [25, 83]. The bias at time 𝑡 for CV value𝑄𝑖 is given by the expression

𝑉 (𝑄𝑖) = 𝑘𝐵𝑇
(
𝛾 − 1

𝛾

)
log

(
𝑃𝑡 (𝑄𝑖)
𝑍𝑡

+ 𝜖
)
. (2.8)

Here in the prefactor, 𝑇 is the temperature, 𝑘𝐵 is Boltzmann’s constant, and 𝛾 is the bias fac-

tor. 𝑃𝑡 (𝑄) is the current estimate of the probability distribution, 𝑍𝑡 is a normalization factor that

comes from integrating over sampled 𝑄 space. Finally, 𝜖 = exp

(
Δ𝐸
𝑘𝐵𝑇

𝛾

𝛾−1

)
is a regularization con-

stant that ensures the maximum bias that can be applied is Δ𝐸. For one of our systems, we found

that limiting the maximum bias using OPES-MetaD helped prevent unphysical exploration along

our LDA coordinate (this is also possible using other approaches such as Metabasin Metadynam-

ics [87]). Even with this limitation, we apply additional wall potentials to prevent exploration

well beyond the LDA values for each of our two states. As in WT-MetaD, 𝐹 (𝑄) can be directly

estimated from𝑉 (𝑄) by 𝐹 (𝑄) ≈ − 𝛾

𝛾−1𝑉 (𝑄) or through a reweighting scheme [25]. Details of the

sampling parameters used for each system are given in Section 2.5.

2.2.5 Implementation

Clustering and iterative alignment of trajectory frames prior to learning LDA vectors is per-

formed using our shapeGMMTorch package, which is a high performance re-implementation of

the methods from Ref. [75], implemented with pyTorch [88] for accelerated computation on
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GPUs. shapeGMMTorch is available from https://github.com/mccullaghlab/shapeGMMTorch

and can easily be installed in python using the command pip install shapeGMMTorch. We have

also created a wrapper library for the training of LDA vectors directly from positional data, which

is available from https://github.com/mccullaghlab/pLDA and which can be easily installed

with pip install posLDA (although this wrapper was not used in the analysis performed in this

paper as it was not yet available). Within posLDA, vectors are learned using the SVD implemen-

tation of the scikit-learn LinearDiscriminantAnalysis package [40].

In order to compute and bias these vectors on the fly within MD simulations, the optimal

alignment and linear combination procedure has been implemented in the PLUMED open source

library [81, 82]. All procedures, analysis for every case studied in this work, and PLUMED code are

made available at https://github.com/hocky-research-group/posLDA_paper_2023, and the

code for computing LDA coordinates and Mahalanobis distances on positions will be contributed

as a module to PLUMED shortly.

2.3 Results and Discussion

2.3.1 LDA is a Good Reaction Coordinate for HP35 Folding

In previous work, we applied our shapeGMM clustering approach to a 305 𝜇s trajectory of

a 35-amino acid fast-folding folding mutant Villin headpiece domain (HP35), obtained from the

D.E. Shaw Research Group [89]. From our data, we choose to study a six state representation

of the data, whose states produce an interpretable representation of folding and unfolding, and

which is found not to be overfit by a cross-validation approach. Details of the clustering and

cross-validation are provided in Ref. [75]. The definition of this six state model, {𝝁 𝒊, 𝚺𝒊}𝐾=6 is

trained from 25,000 frames out of ∼ 1.5 million, and then all frames are assigned to clusters based

on which cluster center it is closest to in terms of Mahalanobis distance on positions.
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Figure 2.1: Folding/unfolding coordinate for HP35. (A) Points from HP35 trajectory are colored by state
assignment and mapped into natural folding coordinates of the RMSD of residues in helix 1 or helix 3
to that in the folded state (which is a 3 helix bundle). State 0 is the most folded and state 4 is the most
unfolded. Contours shown are every 0.5 kcal/mol in the range (0,6). (B) Porcupine plot showing the
magnitude of the LDA coefficients trained only on states 0 and 4 from A, overlaid on the starting HP35
structure. (C) Histogram of LDA coordinate 𝑙 for each separate state. 𝑙 evenly separates all states, with
state 0 and 4 at maximum separation.

A single folding/unfolding coordinate is constructed by performing LDA on frames assigned

to the folded and unfolded states. The folded and unfolded states were assigned based on the
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RMSD to folded helix 1 and RMSD to folded helix 2 2D map shown in Figure 2.1A for this long

trajectory with points colored by the assigned states. From this figure, we can assign state 0 as the

folded state because it is the state with lowest RMSDs (it also has the largest population) and state

4 as the most unfolded state because it is the state with the largest RMSDs. LDA is performed

on these two states to produce a single LD vector, denoted 𝑙 , after an iterative alignment of the

amalgamated two-state trajectory to the global mean and covariance, as described above. The

magnitude of the coefficients in this vector are illustrated as particle displacement vectors in the

porcupine plot in Figure 2.1B. The histogram in Figure 2.1C shows the 𝑙 values adopted in each

state. We see from this data that this coordinate separates state 0 (𝑙 ≈ −3) and state 4 (𝑙 ≈ 12).

To our surprise, this single coordinate, which was trained only on data from state 0 and state

4, separates the other four states as well, which suggests that it might be sufficient to produce

transitions between folded and unfolded through physically meaningful configurations.

Figure 2.2A shows the variation of 𝑙 versus time for this long trajectory, and exhibits many

transitions between the folded (𝑙 ≈ −3) and unfolded (𝑙 ≈ 12) states (for comparison, Ref. [90]

found that this long trajectory contains 61 folding transitions with their definition of folding). In

order to assess the quality of this CV, we compute the committor of each frame in the trajectory

𝑐 (𝒙𝒕 ) [30, 56, 91], which for time 𝑡 is 1 if the system reaches a folded state before reaching an

unfolded state in the times following 𝑡 .

To assess the quality of a reaction coordinate, we can compute the committor probability for

each value of 𝑙 on a grid of size 𝛿𝑙 .

𝑃𝑐 (𝑙𝑖) =
1

𝑀𝑖

𝑁
frames∑︁
𝑡=1

𝑐 (𝒙𝒕 ) [𝑙 (𝒙𝒕 ) ∈ (𝑙𝑖 − 𝛿𝑙, 𝑙𝑖 + 𝛿𝑙)] (2.9)

𝑀𝑖 =

𝑁
frames∑︁
𝑡=1

[𝑙 (𝒙𝒕 ) ∈ (𝑙𝑖 − 𝛿𝑙, 𝑙𝑖 + 𝛿𝑙)] . (2.10)

In Figure 2.2B, we show the approximate FES along 𝑙 computed as 𝐹 (𝑙) = −𝑘𝐵𝑇 ln 𝑃 (𝑙) for the
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Figure 2.2: LDA results for the folding/unfolding of HP35 from unbiased MD. (A) LDA coordinate trained
on states 0 and 4 vs. time for the full 305 𝜇𝑠 HP35 trajectory shows many transitions between folded
(∼ −3) and unfolded (∼ 12) states. (B) Free energy vs 𝑙 for this data, colored by the committor probability
in each bin, using 150 bins for the range -8 to 20. This result does not change when discretizing into 50 or
more bins.

long unbiased trajectory, colored by the value of 𝑃𝑐 (𝑙). The FES shows a stable well at a value of

𝑙 = −3 corresponding to the highest population state, the folded one, and very shallow minima

for each of the other states. The value of 𝑃𝑐 varies continuously from 1 to 0 along this coordinate,

reaching a value of 0.5 at 𝑙 = 1, just outside the folded basin. By this metric, our very simple

coordinate is a good CV for characterizing the transition between folded and unfolded states,

although the lack of a high barrier separating the two states (due to the system being near its

melting temperature) makes it more ambiguous how close the point of 𝑃𝑐 = 0.5 is to a classic

transition state. The coincidence of 𝑃𝑐 = 0.5 with a clear barrier is observed in Figure 2.6 where
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we train using all 6 states, but for this paper we chose to focus only on one dimensional LDA

spaces. In Figure 2.7 we show the FES projected between the folded states and all other states,

with each possible choice of alignment.

2.3.2 LDA is a Reasonable Sampling Coordinate for HP35 Folding
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Figure 2.3: OPES-MetaD sampling on HP35 using the folding/unfolding LDA coordinate. (A) LDA co-
ordinate vs. times for OPES-MetaD simulation. (B) Comparison of free energy estimated from unbiased
MD and OPES-MetaD.

To assess the ability to sample along an LDA coordinate we perform OPES-MetaD to bias

the system to explore 𝑙 . For the MetaD parameters listed in Section 2.5, we find that transitions

between the folded and unfolded state are accelerated. For these parameters, we are able to

obtain several transitions in 10 𝜇𝑠 , resulting in a estimated FES that is in fair agreement with
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that obtained from the long unbiased trajectory considering it is obtained in only 3% of the MD

time. This undersampling of the large unfolded region using only a single coordinate is likely

a reflection of the usual problem of sampling slow orthogonal degrees of freedom. Despite this,

when we look at the FES projected on natural folding coordinates in Figure 2.8, we see that our

sampling does a good job capturing the main features of the long unbiased trajectory, including

the presence of intermediates along the x- and y- axes, and the high energy unfolded state located

in the upper right. As inferred from the 1d FES, the most unfolded regions are unexplored and the

statistical weight of the central intermediate basin is incorrect. Shorter replicates of simulations

starting from different initial structures (Figure 2.9) show the variance in FES estimates that could

arise if one is not careful to converge sampling. On the whole, our results are evidience that our

simple LDA coordinate is a promising first step for sampling between two states of a complex

biomolecule.

2.3.3 Accurate Sampling Using LDA for a Bistable Helix

The LDA procedure can be applied to determine a reaction coordinate separating two states

evenwithout sampling the actual transition (analogous to Ref. [52]). To assess this behaviorwe in-

vestigate the right to left-handed helix transition of (Aib)9, a nine residue peptide formed from the

achiral 𝛼-aminoisobutyryl amino acid [92]. The helical states of achiral molecules must by sym-

metry have equal free energy, andwe previously took advantage of this property in benchmarking

sampling and clustering methods [75, 93]. The properties of (Aib)9 have been characterized in

simulation including recently as a tool to benchmark advanced methods for RC optimization [74,

94, 95].

We performed 20 ns simulations starting from the left and right-handed states of (Aib)9 using

inputs from Ref. [74] (see Section 2.5 for details). We did a three state clustering of the combined

MD data (total 40 ns, sampled every ps) and verified that the two most populated clusters are

the left and right hand states. The coordinates of backbone atoms only were used for the clus-
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Figure 2.4: LDA coordinate for helical inversion of (Aib)9. (A) LDA coordinate 𝑙 vs. time for training
data starting from left and right-handed helix. (B) Porcupine plot showing the magnitude of the LDA
coefficients on the left-handed helical structure.

tering procedure. We then performed an iterative alignment of the combined data to compute

a global (𝝁, 𝚺), and then computed a single LDA vector between those frames coming from the

left- and right- states, respectively from the globally aligned trajectory. Figure 2.4 shows that this

coordinate separates the training data with 𝑙 ∼ 50 indicating a right-handed helix and 𝑙 ∼ −50

indicating a left-handed helix. The left-handed helix is the starting point for further runs.

Having trained 𝑙 , we next performed conventional and WT-MetaD simulations starting from

the structure in Figure 2.4A. Figure 2.5A shows that MetaD (right) substantially increases the rate

of transition between the left and right-handed states as compared to conventional MD (left).

A more chemically motivated way of computing the helicity of (Aib)9 is the parameter 𝜁 ′ =

−∑
7

𝑛=3𝜙𝑛 , the negative sum over the central backbone 𝜙 dihedral angles [74]. This quantity takes

on values of approximately 5 for right-handed and -5 for left-handed helices [74]. Figure 2.5B

shows qualitatively similar behavior for 𝜁 ′ as 𝑙 .

Figure 2.5C shows the FES computed for these two quantities. The sampled 𝑙 has a nearly

perfectly symmetrical FES, and in particular the free energy difference between the left and right-

handed states is negligible. For the FES of the non-biased 𝜁 ′ computed by reweighting, the result

is nearly as symmetrical, and the offset in free energy between the left and right-handed size

35



0 500 1000 1500
Time (ns)

50

0

50

l

A MD

0 500 1000 1500
Time (ns)

WT-MetaD

0 500 1000 1500
Time (ns)

5

0

5

′  (
ra

di
an

s)
B

0 500 1000 1500
Time (ns)

50 0 50
l

0

5

10

FE
 (k

ca
l/m

ol
)

C

5 0 5
′ (radians)

Figure 2.5: Metadynamics sampling results along the LDA coordinate for (Aib)9. (A) LDA coordinate 𝑙 vs.
time for 1.5 𝜇s of conventional MD and WT-MetaD. (B) Helical parameter 𝜁 vs. time for the trajectories
in A. (C) FES along 𝑙 and 𝜁 from WT-MetaD simulations.

is visible but minuscule. This result appears to be as good as that obtained in Ref. [74], which

uses a very sophisticated iterative process and 900 ns of unbiased and biased simulation data to

obtain an optimized sampling coordinate as compared to our 40 ns of input data; however, their

optimized coordinate appears to perform better in terms of transitions per unit time generated

with their choice of MetaD parameters. As detailed in Section 2.5, the parameters used in ourWT-

MetaD simulation are very gentile; their magnitude was limited by “crashing,” which typically

occurs due to inaccurate numerical integration. To check this, we demonstrate in Figure 2.10
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that use of a 1fs integration timestep allows us to use much more aggressive MetaD parameters,

which results in much more frequent transitions, as well as accelerated convergence enough to

justify the use of a smaller timestep Figure 2.11. It is possible that implementation of analytical

derivatives for our procedure may further mitigate this issue if they can be properly derived, and

we will pursue this going forward.

2.4 Conclusions and Outlook

In this work, we demonstrated that LDA on positions computed from two states of a system

produces a good reaction coordinate, both in terms of state transition kinetics and our ability to

bias that coordinate to assess the FES along that coordinate. This was true for (Aib)9 even though

the RC was trained only using short simulations starting in each state, making this a promising

approach evenwhen only structures of endpoints of a process are available. In contrast to Ref. [52]

where input features were internal coordinates, we were able to use standard LDA rather than

HLDA in this case and achieve good performance.

We note that LDA on positions would not apply directly to problems such as molecular dis-

sociation since the dissociated states cannot be aligned to a single average structure; however,

we do think this coordinate would work well for apo-holo transitions of a biomolecule and could

easily be combined with a ligand-distance coordinate to overcome sampling challenges e.g. as

observed in Ref. [96]. There are, of course, difficulties in resolving structural states of globular

proteins that could make application of shapeGMM and subsequent LDA challenging. Namely,

structural states of globular proteins can differ in only a small fraction of the total degrees of

freedom. We feel that the heterogeneous nature of allowed covariance in the Kronecker form of

shapeGMM will allow us to resolve these states with adequate sampling. Once the clusters are

resolved the LDA procedure described in the current manuscript will highlight the coordinates

relevant to separate the clusters.
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For HP35, multidimensional LDA by construction better separates all of the states of the

molecule and may also provide an even better reaction coordinate for kinetics (Figure 2.6). It

is not yet clear if this result is general or specific to the HP35 system. Regardless, the use of mul-

tidimensional LDA as a RC is intriguing and we are currently investigating the advantages and

limitations of these coordinates. However, this is not an option when information about multi-

ple states is unavailable a priori (such as in the case of (Aib)9) which is why we did not include

it here. For cases like that, it would be intriguing to first sample along the 1-dimensional reac-

tion coordinate, then train a GMM with a higher number of states, and continue iterating this

approach.

The use of states defined from our GMM clustering approach presents both an advantage

and disadvantage as illustrated in the case of HP35. Our approach allowed us to explore the

folding/unfolding process and most of the conformational landscape (Figure 2.8), but we were

not able to fully sample the FES around the unfolded state. For sampling a broad and entropy

dominated state, combining CV based sampling on position LDA coordinates with tempering or

temperature accelerated methods should provide more accurate information in this region as in

many past studies [97–101].

In both the case of HP35 and (Aib)9, we were able to accelerate transitions between two states

using MetaD or OPES-MetaD. In our hands, the biased simulations were sensitive to sampling

protocol in terms of being able to run microseconds or longer without “crashing.” HP35 was

less sensitive to this issue using OPES-MetaD, while (Aib)9 performed better with standard WT-

MetaD. For this reason, we initially used small bias factors and hill heights/barrier heights, which

resulted in fewer transitions and presumably worse convergence in fixed simulation time. We

speculated that some of this sensitivity may come from our choice of the global trajectory mean

and covariance as the reference state when computing our LDA vectors, however subsequent

tests using alignment to left or right-handed helices for (Aib)9 showed that these alignments

were more sensitive to crashing and had worse convergence performance, supporting our initial
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choice of global alignment (Figure 2.12, Figure 2.13). A compelling option is presented in the

ATLAS method of Ref. [78], where bias is computed along vectors to multiple reference states,

weighted by distance from that reference state, and we are beginning to assess that approach.

2.5 Simulation Details

All simulations were performed using GROMACS 2019.6 [102] with PLUMED 2.9.0-dev [81,

82]. GROMACS ‘mdp’ parameter files and PLUMED input files are available in our paper’s github

repository for complete details.

HP35 Simulations

A 305 𝜇s all-atom simulation of Nle/Nle HP35 at𝑇 = 360𝐾 from Piana et al.[89] was analyzed.

The simulation was performed using the Amber ff99SB*-ILDN force field and TIP3P water model.

In that simulation, protein configurations were saved every 200 ps, for a total of ∼1.5M frames.

For our simulations, we solvate and equilibrate a fresh system using the same forcefield at 40mM

NaCl. Minimization and equilibration are performed using a standard protocol
1
, at which point

NPT simulations are initiated at 𝑇 = 360𝐾 . mdp files for all steps of this procedure and the

topology files are all available in the paper’s github.

OPES-MetaD simulations are performed with 𝛾 = 8, Δ𝐸 = 10 kcal/mol, pace of 500 steps, and

a multiple time step [103] stride of 2. Quadratic walls are applied at 𝑙 = 5 and 𝑙 = −15 with a bias

coefficient of 125 kcal/mol/Å
2
.

(Aib)9 Simulations

Equilibrated inputs for (Aib)9 were provided by the authors of Ref. [74]. In brief, simulations

using the CHARMM36m forcefield and TIP3P water [104]. MD simulations are performed in NPT

1http://www.mdtutorials.com/gmx/lysozyme/index.html
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with a 2 fs timestep at 𝑇 = 400𝐾 .

WT-MetaD simulations are performed with ℎ = 0.005 kcal/mol, 𝜎 = 0.43, 𝛾 = 2 and a multiple

time step [103] stride of 2. Quadratic walls are applied at 𝑙 = 70 and 𝑙 = −60 with a bias coefficient

of 125 kcal/mol/Å
2
. 𝜎 was chosen as the 𝜎𝑙/3 where 𝜎𝑙 was the standard deviation in 𝑙 over the

20 ns simulation starting from the left helical state used in the training of the CV.

2.6 Supplementary Figures

Two state vs. six state LDA
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Figure 2.6: Unbiased estimate of free energy along 2-state and 6-state LD1 coordinates. The left shows
the FES computed along 𝑙 , the LDA coordinate from states 0 and 4 in our GMM model, and the right
shows the FES computed along 𝑙1, the first LDA coordinate from a model trained on all 6 states.
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Comparison of different state pairs and alignment choices
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Figure 2.7: FE profiles along LD1 obtained from different state pairs and alignments. Each row represents
total three FE profiles for a particular cluster pair using: (1) alignment to folded cluster, (3) alignment to
cluster 𝑋 , and (3) global alignment for that cluster pair respectively from left to right.
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Comparing FES from unbiased and biased MD
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Figure 2.8: Comparison of FES projected along RMSD coordinates. FES from unbiased MD simulation
and OPES-MetaD reweighted along coordinates measuring RMSD of the terminal two helices to a refer-
ence folded structure.
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Comparison of independent runs with less sampling
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Figure 2.9: Comparing the convergence for independent runs. (top) OPES-MetaD replicate trajectories
for HP35. Run 1 is the 10𝜇s simulation studied in themain text. The other three runs are 2.5𝜇s runs starting
from other points obtained in the original trajectory, with separate equilibrium performed. Each of these
three simulations has one to two transitions. (bottom) Comparison of FES obtained from OPES-MetaD
for HP35, with a dashed line showing the FES obtained from unbiased MD. Run 3 producing a perfect FES
by chance.
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Comparing 1fs to 2fs for (Aib)9
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Figure 2.10: LD1 vs. time from three different simulations of (Aib)9. All three coordinates are obtained
from global alignment of input data. A was performed with h = 0.005 kcal/mol, 𝜎 = 0.43, 𝛾 = 2 and a
multiple time step stride of 2. B was performed with h = 0.50 kcal/mol, 𝜎 = 0.50, 𝛾 = 8 and a multiple time
step stride of 2. C was performed with h = 1.0 kcal/mol, 𝜎 = 1.20, 𝛾 = 8 and a multiple time step stride of 2.
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Comparing sampling efficiency of different alignments in (Aib)9
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Figure 2.11: Global Alignment results. WT-MetaD simulation using 1fs time step, initiated from left
handed state and the global alignment was used. Simulation was performed with h = 0.50 kcal/mol, 𝜎 =
0.50, 𝛾 = 8 and a multiple time step stride of 2. Top row shows fluctuation of LD1 with time and FE along
it. Bottom row shows the same for 𝜁 ′ coordinate.
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Figure 2.12: Left Alignment results. WT-MetaD simulation using 1fs time step, both initiated and aligned
to the left handed helix. Simulation was performed with h = 0.005 kcal/mol, 𝜎 = 0.43, 𝛾 = 2 and a multiple
time step stride of 2. Top row shows fluctuation of LD1 with time and FE along it. Bottom row shows the
same for 𝜁 ′ coordinate. Note that the initial value of LD1 is close to zero according to our definition of
LDA coordinate.
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Figure 2.13: Right Alignment Results. WT-MetaD simulation using 1fs time step, initiated from left
handed state and the system was aligned to the right handed helix. Simulation was performed with h =
0.10 kcal/mol, 𝜎 = 1.0, 𝛾 = 4 and a multiple time step stride of 2. Top row shows fluctuation of LD1 with
time and FE along it. Bottom row shows the same for 𝜁 ′ coordinate. Note that the initial value of LD1 is
far away from zero unlike the case of left alignment.
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3 | Quantifying Unbiased Conformational

Ensembles from Biased Simulations Using

ShapeGMM

This chapter has been adapted from Ref. [105]

3.1 Introduction

Conformational ensembles of molecules dictate many of their thermodynamic properties.

Conventional molecular dynamics (MD) simulations allow us to sample models of these ensem-

bles but suffer from the so-called rare event problem. A variety of enhanced sampling techniques,

such as Metadynamics (MetaD) [20, 24], Adaptive Biasing Force [106], Gaussian accelerated MD

[107], and Temperature Accelerated MD/Driven Adiabatic Free Energy Dynamics [26, 27], have

been developed to promote faster sampling by effectively heating some degrees of freedom [55].

Unfortunately, due to the biased sampling of many of these approaches, it is not obvious how

to use the biased configurations in methods such as Markov State Models (MSMs) [37, 108]

and/or structural clustering approaches that quantify the conformational ensemble. Here, we

adapt shapeGMM [75], a probabilistic structural clustering method, to rigorously quantify the

unbiased conformational ensembles generated from biased simulations. The result is a high di-

mensional Gaussian mixture model (GMM) characterizing the unbiased landscape that can be
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used to extract important thermodynamic quantities and to give additional insight beyond the

low dimensional projections often used to represent free energy landscapes.

Meaningful quantification of conformational ensembles from large molecular simulations re-

quires the grouping of similar frames using a clustering algorithm. Clustering algorithms for

molecular simulation can be grouped into two categories: temporal and structural. Temporal

clustering, such as spectral clustering of the transition matrix [38, 39], has been successfully ap-

plied to MD trajectories to achieve kinetically stable clusters for use in objects like MSMs [109–

111]. Enhanced sampling techniques, however, can distort the underlying kinetics of the system

making temporal clustering difficult to apply properly in these circumstances. While there have

been efforts to build MSMs from enhanced sampling data [112, 113] it still remains a challenge

[114]. Additionally, buildingMSMs relies on an initial structural clustering step, making it critical

to perform this step accurately even in the context of enhanced sampling. Structural clustering

involves partitioning either frames or feature space into a finite number of elements. This can

be achieved from enhanced sampling data but care must be taken to properly account for the

non-uniform weights of the frames.

Previous efforts to use structural clustering algorithms on enhanced sampling simulations

have focused on partitional, as opposed to model-based, algorithms. The main results of par-

titional algorithms are cluster populations that can be reweighted based on enhanced sampling

frameweights to estimate the unbiased populations[112, 115]. Model-based clustering algorithms

offermany advantages over partitional algorithms themost relevant being that the resulting prob-

ability density can be used predict clusterings on new data and estimate Thermodynamic proper-

ties of the underlying ensemble. Reweighting the cluster populations of model-based algorithms

a posteriori is, however, not satisfactory for methods such as GMMs, as the frame weights will af-

fect determination of additional model parameters. It is possible to use multiple copies of frames

to approximately account for the frame weights but this can yield intractably large trajectories

and inaccuracies due to rounding.
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In this work, we present an adaptation to shapeGMM [75], a probabilistic structural cluster-

ing method on particle positions, to directly account for non-uniform frame weights. As opposed

to introducing copies of input data and maintaining uniform weights, the current method di-

rectly accounts for non-uniform frame weights and is thus more efficient and scalable than the

alternative. In the next section we briefly introduce the shapeGMM method and the adaptations

necessary to account for non-uniform frame weights. This is followed by a demonstration of the

method on three examples of increasing difficulty, specifically demonstrating that our intuitive

choices of frameweights fromMetadynamics simulations result in a reliable clustering procedure.

We show in benchmark cases how this method can yield thermodynamic quantities directly, and

use the complex case of actin flattening to show how a weighted shapeGMM can give physical

insight into the conformations sampled, in a case where unbiased simulation would not be a prac-

tical option. In addition, frame-weighted shapeGMM is implemented in an easy-to-use python

package (pip install shapeGMMTorch).

3.2 Theory and Methods

3.2.1 Overview of shapeGMM

In shapeGMM, a particular configuration of a macromolecule is represented by a particle

position matrix, 𝒙𝑖 , of order 𝑁 × 3, where 𝑁 is the number of particles being considered for

clustering. To account for translational and rotational invariance, the proper feature for clustering

purposes is an equivalence class,

[𝒙𝑖] = {𝒙𝑖𝑹𝑖 + 1𝑁 ®𝜉𝑇𝑖 :
®𝜉𝑖 ∈ R3, 𝑹𝑖 ∈ SO(3)}, (3.1)

where
®𝜉𝑖 is a translation in R3

, 𝑹𝑖 is a rotation R3 → R3
, and 1𝑁 is the 𝑁 × 1 vector of ones. [𝒙𝑖]

is thus the set of all rigid body transformations, or orbit, of 𝒙𝑖 .
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The shapeGMM probability density is a Gaussian mixture given by

𝑃 (𝒙𝑖) =
𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ), (3.2)

where the sum is over the 𝐾 Gaussian mixture components, 𝜙 𝑗 is the weight of component 𝑗 , and

𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ) is a normalized multivariate Gaussian given by

𝑁 (𝒙𝑖 | 𝝁, 𝚺) =
exp

[
−1

2
(𝑔−1𝑖 𝒙𝑖 − 𝝁)𝑇𝚺−1(𝑔−1𝑖 𝒙𝑖 − 𝝁)

]√︁
(2𝜋) (3𝑁 )

det 𝚺

, (3.3)

where 𝝁 is the mean structure, 𝚺 is the covariance, and 𝑔−1𝑖 𝒙𝑖 is the element of the equivalence

class, [𝒙𝑖], that minimizes the squared Mahalanbonis distance in the argument of the exponent.

Determining the proper transformation, 𝑔𝑖 , is achieved by translating all frames to the origin and

then determining an optimal rotation matrix. Cartesian and quaternion-based algorithms for de-

termining optimal rotation matrices are known for two forms of the covariance were considered

𝚺 ∝ 𝑰3𝑁 [116, 117] or 𝚺 = 𝚺𝑁 ⊗ 𝑰3 [118, 119], where 𝚺𝑁 is the 𝑁 × 𝑁 covariance matrix and ⊗

denotes a Kronecker product. In this manuscript, we employ only the more general Kronecker

product covariance.

3.2.2 Incorporating Non-uniform Frame Weights in shapeGMM

Previously, each frame in shapeGMM was considered to be equally weighted. Approximate

weighting of frames could be taken into account by including frames multiple times in the train-

ing data to give them more importance, however this introduces the imprecision of rounding to

the nearest integer and can be extremely computationally expensive due to the large increase

in amount of training data. Here, we take non-uniform frame weights into account by perform-

ingweighted averages in the ExpectationMaximization estimate ofmodel parameters { ˆ𝜙 𝑗 , 𝜇 𝑗 , ˆ𝚺 𝑗 },

consistent with other fixed-weight GMMprocedures [120]. Considering a normalized set of frame
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weights, {𝑤𝑖} where
∑𝑀
𝑖=1𝑤𝑖 = 1 for 𝑀 frames, their contribution to the probability can be ac-

counted for by weighting the estimate of the posterior distribution of latent variables:

𝛾𝑍𝑖 ( 𝑗) = 𝑤𝑖
ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )∑𝐾
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
. (3.4)

The frame weight will propagate to the estimate of component weights, means, and covariances

in the Maximization step through 𝛾𝑍𝑖 ( 𝑗):

ˆ𝜙 𝑗 =

𝑀∑︁
𝑖=1

𝛾𝑍𝑖 ( 𝑗) (3.5)

𝝁 𝑗 =

∑𝑀
𝑖=1 𝛾𝑍𝑖 ( 𝑗)𝑔−1𝑖, 𝑗 𝒙𝑖∑𝑀

𝑖=1 𝛾𝑍𝑖 ( 𝑗)
(3.6)

ˆ
𝚺 𝑗 =

∑𝑀
𝑖=1 𝛾𝑍𝑖 ( 𝑗)⟨ ˆ𝚺𝑁 ⟩𝑖∑𝑀

𝑖=1 𝛾𝑍𝑖 ( 𝑗)
⊗ 𝑰3 (3.7)

Additionally, the log likelihood per frame is computed as a weighted average

ln(𝐿) =
𝑀∑︁
𝑖=1

𝑤𝑖 ln

(
𝐾∑︁
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
)
. (3.8)

3.2.3 Choosing Number of Clusters

Performing shapeGMM requires the user to choose a number of clusters, 𝐾 . The “optimal”

choice will be system and problem specific and potentially has no wrong answer. The choice is no

different if you consider uniformly or non-uniformly weighted frames. We use a cluster scan with

a combination of the elbow method and cross validation to assess if our choice of𝐾 is reasonable.

A good choice of clusters based on this approach is to find the number of clusters where the

increase in log-likelihood with 𝐾 is decreasing fastest, which we can evaluate by choosing the

minimum of the second derivative of ln(𝐿) with respect to number of clusters. In practice, this

works well for simple systems, but it may be hard to pick a “best” choice for more complex

52



systems, so we may seek a choice that is physically interpretable.

3.2.4 Assigning Frames to Clusters

After the model parameters have been fit using fuzzy assignments, individual frames are as-

signed to the cluster in which that frame has the largest likelihood (largest 𝛾𝑍𝑖 ( 𝑗)). This is the

standard procedure for clustering from a GMM and is no different for the frame-weighted version.

3.2.5 Implementation

We have completely rewritten shapeGMM in PyTorch for computational efficiency and ability

to use GPUs. The current implementation takes an array of frame weights as an optional argu-

ment to both the fit and predict functions (the code defaults to uniform weights). The PyTorch

implementation is significantly faster than the original version and is available both on github

(https://github.com/mccullaghlab/shapeGMMTorch) and PyPI (pip install shapeGMMTorch).

Examples are also provided on that github, and all examples from this paper are provided in a

second github page discussed below.

3.2.6 Choosing Training Sets

For non-uniformly weighted frames the choice of training set may be important. We have

attempted a variety of training set sampling schemes and have found that, at least for the frame

weight distributions that we have encountered, uniformly sampling the training data is at least

as good as any importance sampling scheme. We discuss this further and show results for three

different training set selection schemes for the beaded helix system in Section 3.6.
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3.2.7 Biasing and weighting frames

If configuration 𝒙 is generated from an MD simulation at constant 𝑇 and 𝑉 then 𝑃 (𝒙) ∝

exp(−𝐻 (𝒙)/𝑘𝐵𝑇 ) where 𝐻 is the system’s Hamiltonian [121]. If 𝒙 is generated from an MD

simulation at a different state point (e.g. different𝑇 ) or with a different Hamiltonian, it is sampled

from a different distribution 𝑄 (𝒙). Samples from 𝑄 can be reweighted to 𝑃 with weights [121]

𝑤 (𝒙) ∝ 𝑃 (𝒙)
𝑄 (𝒙) , (3.9)

from which averages over 𝑃 can be estimated. This approach is only effective if 𝑄 and 𝑃 are

finite over the same domain. Nonetheless, (3.9) underlies many enhanced sampling approaches,

for example, it is the basis of the original formulation of umbrella sampling [23]. By including

weights in shapeGMM, we can predict the importance of clusters at nearby state-points or for

similar systems.

3.2.8 Thermodynamic Quantities from ShapeGMM

Many Thermodynamic quantities can be computed from fit shapeGMM probability densities.

One such quantity is the configurational entropy,

𝑆config = −
∫

𝑃 (𝒙) ln 𝑃 (𝒙)𝑑𝒙 = − ⟨ln 𝑃 (𝒙)⟩𝑃 . (3.10)

The configurational entropy has an analytic solution for a single multivariate Gaussian but for

the general mixture of multivariate Gaussians we use sampling and Monte Carlo integration to

approximate the integral.

To do so accurately requires that we generate points from the shapeGMM objects and not

just use the trajectory on which the object was fit. We have introduced a generate function as

an attribute to a fit shapeGMM object that produces configurations sampled from the underlying
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trained distribution.

The second Thermodynamic quantity we consider is the free energy cost to move from one

distribution to another. This is also known as the relative entropy or Kullback-Leibler divergence

and the cost to go from distribution 𝑄 to distribution 𝑃 is given by

𝐷𝐾𝐿 (𝑃 | |𝑄) =
∫

𝑃 (𝒙) ln 𝑃 (𝒙)
𝑄 (𝒙)𝑑𝒙 =

〈
ln

𝑃 (𝒙)
𝑄 (𝒙)

〉
𝑃

. (3.11)

Here, again, we generate points from distribution 𝑃 and average the difference in log likelihoods

of these points in 𝑃 and 𝑄 to assess this value. It should be noted that this is a non-equilibrium

free energy and is thus not necessarily symmetric [122, 123]. The quantity can prove useful in

applications, for example measuring the free energy cost to shift a distribution from an apo to a

ligand-bound state, for example [124, 125].

A symmetric metric is useful when comparing the similarity of two distributions. Here we

opt for the Jensen-Shannon divergence (𝐽𝑆𝐷) [126] given by

𝐽𝑆𝐷 (𝑃 | |𝑄) = 1

2 ln 2

(𝐷𝐾𝐿 (𝑃 | |𝑀) + 𝐷𝐾𝐿 (𝑄 | |𝑀)) , (3.12)

where𝑀 = 1

2
(𝑃+𝑄) is the midpoint distribution between 𝑃 and𝑄 . 𝐽𝑆𝐷 is restricted to be between

0 and 1.

All three of thesemeasures have been implemented in the similarities library of the shapeGMM

code. They use point generation andMonte Carlo sampling to assess the integrals and thus return

both the mean value and the standard error.
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Figure 3.1: Beaded helix 𝜖 reweighting. Trajectory data for a 12 bead polymer having 𝑖, 𝑖 + 4 interactions
with strength 𝜖 = 6was reweighted to predict the ensemble for 𝜖 values ranging from 4.5 to 7 in increments
of 0.1. (A) The corresponding free energies as a function of the linear discriminant (LD) between the two
helices are plotted with 𝜖 values denoted by the color bar on the right-hand. The weights per frame were
fed in to shapeGMM to perform a cluster scan. (B) The resulting log likelihood per frame as a function of
number of clusters from the cluster scan. (C) Second derivative of the curves from B. Error bars in (B) and
(C) are estimated as the standard deviation from three different training sets. The true curve for 𝜖 = 6 is
given in black dashed lines in all three panels.

3.3 Results and Discussion

3.3.1 Proof of Concept: Reweighting the Beaded Helix

To demonstrate the accuracy of the frame-weighted shapeGMM process we perform Hamil-

tonian reweighting of a non-harmonic beaded helix previously studied in Refs. [75, 93]. The

system is composed of 12 beads connected in sequential fashion by stiff harmonic bonds. Every

fifth pairwise interaction is given by an attractive Lennard-Jones potential with well depth 𝜖 . The

value of 𝜖 relative to 𝑘𝑇 dictates the stability of an alpha-helix-like structure as compared to a

completely disordered state. Additionally, because of the symmetry of the model both the left-

and right-handed helices have equal probability no matter the value of 𝜖 . A value of 𝜖 = 6 in

reduced units forms stable helices while allowing transitions between the two folded states; here

we performed a long unbiased trajectory to sample both left and right states, as well as possibly

intermediates (see Section 3.5 for details).
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ShapeGMM suggest three clusters is a good choice for a simulation of the beaded helix with

𝜖 = 6. Shown in blacked dash line in Figure 3.1A is the unbiased free energy for this system com-

puted as 𝐹 (𝑠) = − ln 𝑃 (𝑠) for a linear discriminant (LD) reaction coordinate [54]. By performing

a scan over number of clusters on 100k frames from an unbiased trajectory, we identify three

clusters as the optimal number by observing a definite kink in the curves in Figure 3.1B and the

presence of a minimum in the second derivative in Figure 3.1C. These clusters correspond to the

left- and right- helical states as well as a partially unfolded intermediate cluster, examples shown

in Figure 3.1A.

Reweighted clustering of the beaded helix system predicts that the prevalence of the partially

unfolded intermediate will disappear by 𝜖 = 6.5. To demonstrate this, we performed frame-

weighted shapeGMM cluster scans of our trajectory at 𝜖 = 6 with weights corresponding to 𝜖

values ranging from 4.5 to 7.0 in increments of 0.1. Given that the samples come from a Boltzmann

distribution, theweights for each frame given by (3.9) are𝑤𝑖 (𝜖) = 𝑒 (𝑈 (𝒙𝑖 |𝜖=6)−𝑈 (𝒙 𝒊 |𝜖))/(𝑘B𝑇 )
. The log

likelihood of the shapeGMM fits as a function of number of clusters are shown in Figure 3.1B,C

with 𝜖 values indicated in the color bar on the right. We see that as 𝜖 increases from 6, the

minimum in the second derivative moves from 3 clusters to 2 cluster. The transition happens

between 𝜖 = 6.4 and 𝜖 = 6.5. This suggests that a simulation run at 𝜖 values of greater than 6.4 (in

reduced units) will not exhibit the partially unfolded third cluster. These results are consistent

with the increasing free energy barrier height as a function of 𝜖 depicted in Figure 3.1A.

The reweighting of 𝜖 for the beaded helix example also predicts that only one cluster will

be present for small 𝜖 . In Figure 3.1B, the elbow at 3 clusters is evident for 𝜖 values as low as

𝜖 = 5 and becomes less pronounced below this threshold. While a minimum at 3 clusters is still

observed in the second derivative plot for 𝜖 = 4.5, the trend is clear that as 𝜖 becomes small

the choice of anything other than 1 cluster is less well supported by the elbow heuristic. This

is an expected result, and consistent with the reduced free-energy barriers observed for small 𝜖

in Figure 3.1A, as 𝜖 approach thermal energy the prevalence of anything other than an unfolded
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𝑄 𝐽𝑆𝐷 (𝐺𝑇 | |𝑄) Δ𝑆config/𝑅
𝐾 𝜖𝑅
3 6.0 0.401(2) 7.22(3)
3 6.0/8.0† 0.357(2) 4.30(2)
2 8.0 0.0071(3) 0.00(2)

†
Only the cluster populations are reweighted to 𝜖 = 8 in this probability density.

Table 3.1: Similarity measures between three beaded helix probability densities. ShapeGMM fit from a
simulation with 𝜖 = 6, 𝑄 , and the “ground-truth” (GT) probability density fit to a simulation at 𝜖 = 8.
The reweighted probability densities are denoted by the number of clusters, 𝐾 , and the value of 𝜖 used in
reweighting, 𝜖𝑅 . The three 𝑄s are: 𝐾 = 3 clusters and weighted to 𝜖𝑅 = 6.0, 𝐾 = 3 clusters from 𝜖𝑅 = 6.0

with only the cluster populations reweighted to 𝜖 = 8, and𝐾 = 2 clusters completely reweighted to 𝜖𝑅 = 8.
The similarity measures are the Jensen-Shannon divergence (𝐽𝑆𝐷) and the difference in configurational
entropy Δ𝑆config = 𝑆

𝑄

config
− 𝑆𝐺𝑇

config
. Error in the last digit is included in parentheses and are estimated as

Monte Carlo sampling errors in estimating the integrals.

state is entropically unfavorable.

ShapeGMM reweighted clustering also produces quantitatively accurate probability densi-

ties for the the beaded helix. To demonstrate this, we compute a reweighted shapeGMM object

(𝜖 = 6 → 8) to a shapeGMM object trained on an unbiased trajectory at 𝜖 = 8, which we refer

to as ground truth (GT). Because, as predicted, transitions at 𝜖 = 8 are very unlikely, this object

is trained on simulations, each with 100k frames, initiated from left and right helices and con-

catenated. Two controls are included that are fit to the 𝜖 = 6 trajectory without reweighting:

the predicted 3 cluster object and that same object with only the cluster populations reweighted

to 𝜖 = 8. To quantitatively compare between two probability densities we use two similarity

metrics, both described above in more detail and introduced as (3.10), (3.11): Jensen-Shannon

divergence (JSD) and change in configurational entropy 𝑆config. These similarity metrics between

the GT and the three different shapeGMM objects are tabulated in Table 3.1. JSD is a symmetric

metric bounded between 0 and 1 where 0 indicates no divergence and 1 indicates complete di-

vergence between the two probabilities. The reweighted shapeGMM object demonstrates a very

small JSD (0.0071± 0.0003) to the GT as compared to either of the 𝜖 = 6 objects (0.357± 0.002 and

0.401±0.002). This trend holds true when comparing relative 𝑆config’s with the difference in 𝑆config
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between the reweighted and GT 𝜖 = 8 shapeGMM probabilities being within error of 0. These

results indicate that the 𝜖 = 8 reweighted shapeGMM probability density is nearly identical to

the GT.

3.3.2 Conformational States of Alanine Dipeptide from Metadynamics

Simulations

Alanine Dipeptide (ADP) in vacuum is a common benchmark system for methods designed to

sample and quantify conformational ensembles. In this work, we demonstrate that ADP MetaD

simulations can be used directly to achieve equilibrium clustering using various estimates of the

frame weights. In Well-tempered MetaD (WT-MetaD), a history dependent bias is generated by

adding Gaussian hills to a grid at the current position in collective variable (CV) space [24, 84]

such that the bias at time 𝑡 for CV value position 𝒔𝑖 is given by

𝑉 (𝒔𝑖, 𝑡) =
∑︁
𝜏<𝑡

ℎ𝑒−𝑉 (𝒔𝑖 ,𝜏)/Δ𝑇𝑒−
(𝑄 (𝒙 (𝜏 ) )−𝒔𝑖 )2

2𝜎2 , (3.13)

where ℎ is Gaussian height, and 𝜎 is the width, and 𝑇 + Δ𝑇 is an effective sampling temperature

for the CVs. Rather than setting Δ𝑇 , one typically chooses the bias factor 𝛾 = (𝑇 + Δ𝑇 )/𝑇 , which

sets the smoothness of the sampled distribution [24, 84]. Asymptotically, a free energy surface

(FES) can be estimated from the applied bias by 𝐹 (𝒔) = − 𝛾

𝛾−1𝑉 (𝒔, 𝑡 → ∞) [84, 85] or using a

reweighting scheme [84, 86]. In MetaD, frames are generated from a time dependent Hamiltonian

so the choice of frame weights for clustering is not obvious. Reweighting of MetaD trajectories

to compute free energy surfaces has been accomplished through several different schemes.

For a static bias 𝑉 added to the initial Hamiltonian, the weight of a frame given by (3.9)

would be 𝑤𝑖 = 𝑒
𝑉 (𝒔𝑖 )/𝑘B𝑇

. Our first choice of frame weights (termed ‘bias’) corresponds to using

this formula even though the bias is time-dependent. A second choice that removes some of the

time-dependence is to use𝑤𝑖 = 𝑒
(𝑉 (𝒔𝑖 (𝑡𝑖 ))−𝑐 (𝑡))/𝑘B𝑇

, where 𝑐 (𝑡) = −𝑘B𝑇 ln

〈
𝑒−𝑉 (𝒔 (𝑡))/𝑘B𝑇

〉
is the bias
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B

Figure 3.2: WT-MetaD simulation for ADP with BF 10. Each column represents a particular choice of
weights been used in frame-weighted SGMM. (A) Cluster scans for each choice of frame weights using 50k
frames, 4 training sets and 10 attempts for each case. (B) Clusterings performed for 𝐾 = 2, 3, 4 are shown
by coloring each of 100K sampled points by their cluster assignment. Contour lines indicate the underlying
free energy surface as computed from theWT-MetaD simulation via reweighting with the different choice
of weights. Contours indicate free energy levels above the minimum from 1 to 11 kcal/mol with a spacing
of 2 kcal/mol.
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Figure 3.3: FE profiles obtained from GMM objects trained on BF=10 Metadynamics data. Each column
corresponds to a different choice of bias and each row corresponds to a different number of clusters used.
These are computed as unweighted histograms from 1M samples obtained from each GMM object. Black
circles placed on the FEs are the centers calculated from the reference structures corresponding to different
clusters, with the size indicating their relative population. Contour lines indicate the underlying free
energy surface as computed from the WT-MetaD simulation, positioned at 1.0 to 11.0 kcal/mol with a
spacing of 2 kcal/mol above the global minimum.

averaged over the CV grid at a fixed time. The quantity𝑉 (𝒔𝑖 (𝑡𝑖)) −𝑐 (𝑡) is called the “reweighting

bias” and can be computed automatically in PLUMED [82], hence we term clustering using this

scheme ‘rbias.’ Finally, we evaluate another commonly used approach to compute Boltzmann

weights of each frame post-facto [127], which in the case of WT-MetaD would correspond to

𝑤𝑖 = 𝑒
−𝐹

final
(𝒔 (𝒙𝑖 ))/𝑘B𝑇 = 𝑒

𝛾

𝛾−1𝑉final (𝒔 (𝒙𝑖 ))/𝑘B𝑇
; we label these weights ‘fbias’. Other more sophisticated

reweighting schemes have also been proposed, e.g. in Refs. [127, 128], but we did not test these

here because, as will be seen, the bias, rbias, and fbias approaches all worked well for our test

system. However, shapeGMM as implemented is capable of using any choice of frame weights.

We include ‘uniform’ weights as a control.
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For assessing the best choice of weights, we performed a 100 ns WT-MetaD simulation on

ADP biasing backbone dihedral angles 𝜙 and𝜓 using bias factor 10, saving every 1 ps to generate

100k frames (see Section 3.5 for full details). The five atoms involved in the 𝜙 and 𝜓 dihedral

angles were chosen for shapeGMM clustering. The coordinates of these atoms and the frame

weights from the four different schemes were fed into shapeGMM. The log likelihood per frame

of the resulting fits as a function of number of clusters is shown in Figure 3.2A. In general, the

three non-uniformly weighted clustering objects result in significantly higher log likelihoods

than the uniform weights for equivalent numbers of clusters 𝐾 > 2, indicating a better fit to the

underlying data. The significant kink in the cluster scans for the non-uniformly weighted objects

at 2 clusters indicate that at least 2 clusters are necessary for a good fit to the data; there is still

substantial increase going from 2 to 3 clusters, however, indicating that there may be additional

insight gained at 𝐾 = 3 and above, as we shall see.

Non-uniform frame-weighted shapeGMMproduces physically relevant clusterings. Figure 3.2B

indicates how sampled points in 𝜙 and 𝜓 space are assigned to two, three, or four clusters when

using each of the choices of frame weights, with the underlying free energy landscape computed

from a weighted histogram using the same choice of weights as used for the clustering indicated

by contour lines. Clustering with uniform weights has little correlation with the underlying

free energy landscape, whereas performance is much better when using any of the non-uniform

weighting schemes. Weighted clustering with 𝐾 = 2 tends to split the landscape into one cluster

covering the most extended upper-left “C5” basin near (-2,2), while using a second cluster to cover

the rest of the landscape (see Ref. [129] for a naming convention). However, higher number of

clusters allows for separating the upper left basin into its two constituent states, C5 and “C7eq”

at (-2,1), while also revealing the presence of the minor “C7ax” state at (1,-1). Slight differences in

contour FES correspond with slight differences in the weighted cluster assignments; for example,

in the 𝐾 = 3 case the upper left and bottom left parts of the axial basin are disconnected at Ψ = 0

for bias weights but connected for rbias and fbias weights.
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Non-uniform frame-weighted shapeGMM also works for standard (untempered) MetaD [20,

84] with Δ𝑇 → ∞. For untempered MetaD, we favor rbias weights, because the final bias is

not static and the instantaneous bias diverges, meaning that initial frames receive no weight. In

Figure 3.6, we show that shapeGMM clustering with rbias weights performs much better than

equally weighted frames, and results are comparable to our study with WT-MetaD, indicating

that frame-weighted shapeGMM can be extended to this method as well.

Non-uniform frame-weighted shapeGMMprobability densities quantitatively capture the cor-

rect free energy basins. Because we know that the free energy in dihedral space is a good proxy

for the configuration space of ADP, we here quantify the accuracy of our GMM fits (which are

15-dimensional objects) by predicting this FE landscape directly from the GMMs. To do so, we

generate 1M samples in Cartesian space from each GMM object and compute the FES from an

unweighted histogram of the backbone dihedral angles. Figure 3.3 shows a comparison of these

predicted FES with the reference FES computed directly from the WT-MetaD bias as described

above. Here we see that uniform weights produces FES that span all of dihedral space but whose

minima are not centered on the true minima.

In contrast, the FESs generated from the non-uniform weighting schemes demonstrates that

the clustering above captures the nature of the underlying FES aswell as could be expected given a

limited number of clusters. FES for𝐾 = 2 capture the primary C7 equatorial global minimum and

C5 metastable state, while going to three or more clusters also allows resolution of the minor C7

axial basin. As should be expected, the GMM objects only resolve the configurational landscape

of our system around the minima, and cannot resolve (non-convex) high free energy regions.

Importantly, we note that the results reflect an intrinsic error due to the fact that we are fitting

an anharmonic landscape to a locally harmonic model, resulting in an over-estimate of the FES

away from the minima. We can also compute a FES that covers the entire energy landscape using

a Monte Carlo procedure described in Section 3.6, resulting in FES shown in Figure 3.8 that are

qualitatively correct but which also reflect the inherent overestimation of the Gaussian model.
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The comparison of FESs can be further quantified by difference metrics which also provide

an alternative metric to choose the best method or best number of clusters. In Figure 3.9 we

show both the root-mean-squared error (RMSE) for the sampled region and the JSD as compared

to the reference FES. While the uniform weights perform poorly, we see that all other weights

do comparably well for 3 or more clusters. Using RMSE as a metric, rbias weights are the most

accurate by a small margin, and a five state clustering is the best within the range 𝐾 = 2 to 𝐾 = 6.

Additionally, we compute the change in configurational entropy between all shapeGMM objects

and the metaD ground truth (Δ𝑆𝑐𝑜𝑛𝑓 𝑖𝑔 in Table 3.2). The trend is similar to the other metrics in

that the weighted objects all have smaller magnitude Δ𝑆𝑐𝑜𝑛𝑓 𝑖𝑔 compared to the uniform weights.

We also include a modified uniformweight shapeGMM object (uniform𝑚𝑜𝑑𝑓 in Table 3.2) in which

we reweight only the cluster populations (𝜙 𝑗 ) after the shapeGMM fit using final bias weights.

Δ𝑆𝑐𝑜𝑛𝑓 𝑖𝑔 values for these objects are almost identical to the unmodified uniform object indicating

that simply reweighting cluster populations is unsatisfactory for shapeGMM.

3.3.3 Elucidating conformational states of the actin monomer

Up to this point, we have established that we can accurately train a GMMwith data weighted

from MetaD or Hamiltonian reweighting for small systems. In this section, we demonstrate that

this approach can provide insight into data for a complex biochemical problem. The actin cy-

toskeleton, composed of filaments of actin, plays major roles in a wide range of active biological

processes, including cell motility and division [131–133]. Actin filaments are non-covalent poly-

mers that form from head-to-tail assembly of globular actin (G-actin), which is a 375-amino acid

protein consisting of four primary subdomains (Figure 3.4A). Each actin monomer contains a

bound nucleotide that is in the form of ATP in G-actin and is eventually hydrolyzed to ADP as

filaments “age” [132, 134]. The polymerization from G-actin to filamentous actin (F-actin) results

in a flattening of the protein which is characterized by a reduction of the 𝜙 dihedral angle shown

in Figure 3.4A [132]. An open question in the field is whether the flat state is metastable in so-
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Figure 3.4: Conformational states of Actin monomer and 2D FES obtained from OPES-MetaD.(A) Car-
toon representation of Actin monomer. The arrows representing the magnitude and directions of the
LD vector acting on 375 𝐶𝛼 atoms. SD1 to SD4 are four subdomains defined for the monomer[130]. 𝑑
is the distance between center of masses (COMs) of subdomains SD2 and SD4. 𝜙 is the dihedral angle
defined using COMs of SD2-SD1-SD3-SD4 respectively (B) FES calculated by performing an unweighted
histogram of ∼1M samples generated from GMM. Contour lines represent the reweighted FE obtained
from restarted OPES-MetaD trajectory using fbias frame weights. Contours are positioned at 1 to 11
kcal/mol with a spacing of 2 kcal/mol above the global minimum. Colored circles are the locations for
different cluster centers weighted by relative population. (C) Snapshots of frames belonging to different
clusters (front view) (D) Top view for the same.
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lution, or whether it is only stabilized when contacting the end of a filament [135]. Additionally,

the structural intermediates along the flattening pathway remain elusive.

Previous efforts to directly sample the flattening of G-actin have proven difficult. These ef-

forts employed umbrella sampling or MetaD on two experimentally defined coordinates 𝜙 and 𝑑

and demonstrate the difficulty in sampling the conformational landscape of actin, either because

restraining those coordinates traps you in the starting state, or because a MetaD bias can quickly

push you into unphysical regions of configuration space [87, 130]. Other related efforts have in-

vestigated the role of flattening on ATP hydrolysis catalyzed by actin, and analogous transitions

in the homologous proteins Arp2 and Arp3 [87, 134, 136–139]. None of these previous studies

have been able to identified intermediate structures that might occur during flattening.

Here, we report for the first time biased MD simulations that sample reversibly the flat to

twisted transition of actin by using our method to produce a position linear discriminant analysis

(posLDA) [54] coordinate separating the two states. To determine the LDA reaction coordinate,

we performed two short MD simulations starting from each of these states and used 10 ns from

the twisted and 5ns from the flat state (shorter because it eventually flattens [136]; see Section 3.5

for full details). We then performed iterative alignment of all frames in both states (using posi-

tions of all 375 C𝛼 atoms) to the global mean and covariance as described in [54]. LDA on the

resulting aligned trajectory yielded a single posLDA coordinate that separates the twisted and flat

states. The coefficients for the posLDA coordinate separating the two states is illustrated using a

porcupine plot in Figure 3.4A. We then performed the OPES variant of WT-MetaD [25, 83] along

this reaction coordinate as described in Section 3.5.

Frame-weighted shapeGMM trained on an OPES MetaD trajectory indicates that five distinct

structural states can be occupied during a twisted to flat transition of actin. The trajectory gen-

erated contains two full round trip trajectories between flat and twisted states as measured by

changes in 𝜙 (Figure 3.12), which provides sufficient sampling to investigate the observed confor-

mations and approximate relative free energies. The FES estimated from this approach is shown

66



in Figure 3.12. To increase the number of samples available for clustering purposes, we initi-

ated new simulations using a fixed bias taken from the end of the simulation as described in

Section 3.5. A cluster scan using these additional frames (see Figure 3.7) shows small kinks at

𝐾 = 3 and 𝐾 = 5, and in Figure 3.4B,C we show results for 𝐾 = 5 in more detail. Reasonable

agreement between the training set and the cross validation set in Figure 3.7 demonstrates a lack

of overfitting on this data set.

The FES computed from the shapeGMM probability density (𝐾 = 5) agrees well with the

MetaD free energy. Figure 3.4B shows the FESs computed from the shapeGMM probability den-

sity (in the colormap) and the MetaD (in the contours). The FESs are shown in the space of the

𝜙 and 𝑑 coordinates illustrated in Figure 3.4A which have been used to describe the G- to F-

actin transition, for better comparison with earlier MD studies [87, 130]. The MetaD simulation

was performed in 𝜙 and the LD coordinate so was reweighted into these coordinates using the

same weights fed into shapeGMM. There is impressively good quantitative agreement between

the surfaces up to 3 kcal/mol ( ∼ 5 𝑘B𝑇 ) considering the very high dimensionality of the GMM.

The agreement around the energy minima in this space indicate that the shapeGMM probability

density is a good representation of the MetaD simulation results for these regions.

The five states predicted by shapeGMM are in stark contrast to the two that would be pre-

dicted just by looking at a 2D free energy projection. Overlain on the FES depicted in Figure 3.4B

are circles indicating the average 𝜙 and 𝑑 for the structures assigned to each cluster, with the

size indicating their relative population. The five state clustering detected two clusters in the

flat F-actin like basin (𝜙 ∼ −3) and three states in or around the twisted basin (𝜙 < −10). The

2D FESs either in 𝑑 and 𝜙 (Figure 3.4B) or in the sampled 𝜙 and 𝐿𝐷 (Figure 3.12) space have

two basins. Clustering in this space would thus likely yield two states. The five-state shapeGMM

probability density, however, quantitatively matches the 2D FES thus demonstrating the potential

oversimplification achieved in lower dimensional clusterings.

Figure 3.4C,D show representative snapshots from the frames assigned to each cluster in two
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different orientations. To give some interpretation to these three different states, we have com-

puted the average root-mean-squared deviation (RMSD) to several published crystal or CryoEM

structures of actin alone (twisted), in a filament (flattened), or in complex with an actin binding

protein for the C𝛼 atoms available in all crystal structures (numbers 7-38, 53-365 out of a total

375). The twisted states (𝐶 = 0, 1, 4) all have lower RMSD to twisted than flat actin subunits,

while the converse is true for the flat states (𝐶 = 2, 3). State𝐶 = 4, which is the most twisted, has

the lowest RMSD to the starting structure 1NWK [140] (1.67 Å) and ADP-bound actin 1J6Z [141]

(1.73 Å) than do clusters 0 and 1 (2.59 Å, 2.48 Å). It is expected based on earlier work that our

simulations would produce a more flat equilibrium state for ATP-bound actin than what is seen

in the crystal structure (which was solved with a non-hydrolyzable ATP analog [140]). What is

interesting is that the clustering algorithm still picks up on this more twisted state as a possible

structure, despite the fact that early frames in the trajectory have relatively low weight (since

they have little bias applied at that point).

Interestingly, states 𝐶 = 0 and 𝐶 = 1 have equally low RMSD to actin structures in complex

with another protein as to the twisted structures considered, for example 2.59 Å and 2.48 Å RMSD

to the twisted starting structure 1NWK, but 2.28 Å and 2.09 Å to the structure of actin complexed

with the protein profilin (3UB5 [142]), which is how a large fraction of actin monomers are found

in cells. This suggests that our weighted GMM models may be able to point us towards biologi-

cally relevant configurations within a conformational ensemble.

Within the flat states, the most noteworthy difference appears to be in the disordered D-loop

(upper right), with cluster 3 having a significantly higher variance than cluster 2. This difference

is also evident if we look at the Root-Mean-Squared-Fluctuations of the D-Loop residues shown

in Figure 3.10. This lower RMSF state (𝐶 = 2) could correspond to one of the intermediates

previously probed throughMetaD simulations along a disordered-folded pathway for the D-loop,

which were metastable for the ATP-bound actin used in our study, but would be expected to

become more stabilized after conversion to ADP [143]. Meanwhile, on close inspection (𝐶 = 3)
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seems to contain some more disordered structures and some partially folded structures, meaning

that the higher variance could be a result of combining two sub-populations into one single state.

As it stands, both flattened states have higher RMSF than all twisted states, suggesting a coupling

between D-loop structure and twisting that was previously ascribed to nucleotide state (ATP

vs ADP), as opposed to the conformational transition which results in ATP hydrolysis, and this

would be an interesting question to consider in the future.

3.4 Conclusions

In this work, we present a probabilistic structural clustering protocol that can rigorously ac-

count for non-uniform frame weights. This ability allows shapeGMM to be applied, directly, to

reweighted or enhanced sampling simulation data to achieve a clustering of in the underlying

Hamiltonian of interest. Additionally, we demonstrate that the resulting shapeGMM probability

density is a good approximation to the underlying unbiased probability and can thus be used to

calculate important thermodynamic quantities such as relative free energies and configurational

entropies. To do so, we took advantage of our ability to generate biomolecular configurations

from the trained clustering model; this is a unique and powerful advantage of a using a proba-

bilistic clustering model that operates directly in position space which has not been previously

exploited to our knowledge.

By applying ourmethod to the flattening of G-actin, we have shown that this approach is capa-

ble of picking out physically meaningful structural clusters even for highly complex systems, and

illustrates how structural clustering on biased data can provide additional insights that would be

difficult to obtain only by looking at the free-energy projected into low dimensional coordinates.

In sum, our work represents a significant advance in our ability to quantify biomolecular ensem-

bles. In the future, we envision this approach to be useful in quantifying important biophysical

processes such as ligand binding and allosteric regulation.
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3.5 Simulation Details

Input files, shapeGMM objects, and analysis codes used to generate all figures are avail-

able from a github repository for this article: https://github.com/hocky-research-group/

weighted-SGMM-paper. The simulation input files and plumed parameter files are also included

in a PLUMED-NEST repository under plumID:24.009.

Beaded Helix

A 12-bead model designed to have two equi-energetic ground states as left- and right-handed

helices [93] was simulated in LAMMPS [144]. 11 harmonic bonds between beads having rest

length length 1.0 and spring constant 100 form a polymer backbone. Lennard-Jones (LJ) interac-

tions between every 𝑖, 𝑖 + 4 pair of beads with 𝜎 = 1.5 and a cutoff length of 3.0 give rise to the

helical shape. The 𝜖 value of this interaction dictates the stability of the helices and was the focus

of our reweighting. Simulations were performed with 𝜖 = 6 as the baseline and with 𝜖 = 8 and

𝜖 = 4.5 to assess the accuracy of the reweighting scheme. All non-bonded 𝑖, 𝑖 + 2 and farther also

have a repulsive WCA interaction with 𝜖 = 3.0 and 𝜎 = 3.0 added to prevent overlap, with the 𝜖

for 𝑖, 𝑖 + 2 reduced by 50%. Simulations at temperature 1.0 were performed using ‘fix nvt’ using a

simulation timestep of 0.005 and a thermostat timestep of 0.5. A folding/unfolding trajectory of

length 50000000 steps was generated and analyzed as above. Here, all parameters are in reduced

(LJ) units.

Alanine dipeptide in vacuum

Alanine dipeptide simulations were performed using GROMACS 2019.6 with PLUMED 2.9.0-

dev. GROMACSmdp parameter and topology files are obtained from previous PLUMED Tutorials

(Belfast-7: Replica Exchange I). AMBER99SB-ILDN force field is used with a time step of 2 fs.
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NPT ensemble is sampled using velocity rescaling thermostat and Berendsen barostat with a

temperature of 300K and pressure 1 bar. For METAD simulations we used PACE=500, SIGMA=0.3

(for both 𝜙 and 𝜓 ) and HEIGHT=1.2 kcal/mol. PLUMED input files are available in our paper’s

github repository for complete details.

Actin monomer

Actin simulations were also performed using GROMACS 2019.6 with PLUMED 2.9.0-dev. G-

actin with a bound ATP was built and equilibrated at 310 K as described previously [136]. The

structure of the twisted, ATP-bound actin is derived from the crystal structure with PDB ID

1NWK [140], while that in the flat state is taken from PDB ID 2ZWH [145], with the nucleotide,

magnesium ion, and surrounding water replaced with ATP as described previously. MD simula-

tion for ∼5ns was performed to relax the starting structure. NPT simulation was performed with

2 fs time step. Parrinello-Rahman barostat is used along with velocity rescaling thermostat with

a temperature of 310K and pressure 1 bar. For OPES we used PACE=500, BIASFACTOR=12, BAR-

RIER=15.0 kcal/mol and a multiple time step stride of 2. Two UPPER_WALLS were employed

∼ -1 ° and 31 Å, for 𝜙 and 𝑑 respectively. We also used one UPPER_WALLS at +40.0 and one

LOWER_WALLS at -40.0 for the posLDA coordinate. All the walls used were quadratic with a

spring constant of KAPPA=500 kcal/mol/nm
2
. PLUMED input files are available in our paper’s

github repository.

We performed ∼ 1𝜇s of sampling along this LD coordinate and dihedral angle 𝜙 using the On

the Fly Probability Enhanced Sampling variant of Metadynamics (OPES-MetaD) [25, 83]. This

method uses a kernel density estimate of the probability distribution over the whole space for

biasing rather than building this bias through a sum of Gaussians. The bias at time 𝑡 for CV value

𝒔𝑖 is given by the expression

𝑉 (𝒔𝑖) = 𝑘𝐵𝑇
(
𝛾 − 1

𝛾

)
log

(
𝑃𝑡 (𝒔𝑖)
𝑍𝑡

+ 𝜖
)
. (3.14)
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Here, 𝑃𝑡 (𝒔) is the current estimate of the probability distribution, 𝑍𝑡 is a normalization factor.

Finally, 𝜖 = exp( Δ𝐸
𝑘𝐵𝑇

𝛾

𝛾−1 ) is a regularization constant that ensures the maximum bias that can be

applied is Δ𝐸. OPES-MetaD data can be reweighted similarly to standard WT-MetaD, using the

exponential of the bias (which is similar to rbias for MetaD) or using the estimated free energy

of each frame from the final bias [25].

We chose the OPES variant of MetaD because (a) literature precedent suggests that it con-

verges more quickly than standard WT-MetaD, and (b) it allows us to set an free-energy cutoff

above which bias is not applied (in this case 15 kcal/mol) which limits the amount of unphysical

exploration, in a similar manner to Metabasin-MetaD that we previously showed was desirable

for this problem [87]. Even with this energy cutoff, we needed to include upper and lower walls

to prevent over-flattening or over-twisting observed here and in prior attempts by us [136].

A cluster scan on our OPES trajectory (Figure 3.7) showed a large difference between training

and cross-validation curves. Hence we decided to generate to generate additional training frames.

We did this by taking the bias accumulated after 900 ns of OPES simulation, and started four 1

ns simulations with random velocities from each of 191 initial configurations from the initial

trajectory (separated by 5 ns each), saving every 5 ps; this resulted in ∼153k frames available for

clustering. The resulting training and cross-validation curves are in much better agreement as

discussed in the main text, hence these data were used for clustering and analysis.

3.6 Supplementary Figures

Choosing Training Data

When fitting a shapeGMM, we split our data into a training set and a cross validation set.

The Gaussian mixture components are fit on the training data and their ability to model the cross

validation set is assessed by comparing the log likelihood per frame on both sets. Overfitting will
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lead to a lower log likelihood on the cross validation set than on the training set. Both training

and prediction routines now have built in frame weight arguments.

Training setswere chosen uniformly randomly for the original implementation of shapeGMM.

For non-uniform frameweights, however, there are a variety of other methods one could consider

to best choose a training set. We assessed a number of these including simple ranking, Poisson

sampling, and a Metropolis Monte Carlo method using log frame weights as energies. It was

found the the uniform sampling of frame weights worked as well as other methods especially

when training sets are sufficiently large.

A uniform sampling of the training set performs at least as well as importance sampling of

the training set for the beaded helix example. To assess this we compared shapeGMM objects fit

using various training set sampling schemes. These include: a uniform sampling, a Monte Carlo

sampling in which frames are replaced based on the Metropolis criteria using frame weights,

and a Poisson sampling scheme in which frames are sampled from the frame weight distribution.

The Poisson sampling method differs from the other two in that frames are equally weighted in

the training set but can appear multiple times depending on their relative weights. The Jensen-

Shannon divergence (JSD) between distributions fit using these methods to an 𝜖 = 6 trajectory

with 𝜖 = 8 weights and distributions fit to an 𝜖 = 8 simulation directly (the ground-truth; GT) as

a function of training set size are depicted in Figure 3.5. The JSD between the GT and all fitted

distributions is large (∼ 0.3) for small training set sizes and tends to zero as training sets increase.

This indicates that all methods are accurately reproducing the GT distribution for large enough

training set. We find that the uniform sampling approach does as well or better than either

importance sampling approach for all training set sizes. We note that this result will depend

on the specific distribution of weights. We expect this behavior to hold for relatively uniform

distributions of weights which occur in reweighting to Hamiltonians that don’t deviate much

from the original. It may be important, especially for small training set sizes, in cases in which the

Hamiltonians are significantly different to consider choosing training sets using an importance
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sampling approach. We use a uniform sampling approach for all other applications in this paper.

Figure 3.5: Accuracy of beaded helix reweighted cluster as a function of training set size. The Jensen-
Shannon divergence (JSD) between shapeGMMdistribution fit using reweighting to 𝜖 = 8 and the ground-
truth fit to a simulation run at 𝜖 = 8 as a function of training set size. Three taining set selection schemes
are compared: a uniform sampling of frames, a three-stepMonte Carlo importance sampling method, and
a Poisson sampling method.
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Clustering untempered metadynamics

Figure 3.6: UntemperedMetaD simulation of ADP. (A) Cluster scans obtainedwith 50K frames, 4 training
sets and 10 attempts using rbias frame weights or with uniform weights (labeled ’u’). Training ln(𝐿) curve
is substantially higher with rbias weights, and matches CV curve. (B) Clusterings performed for 𝐾 = 2−4

shown by coloring each of 100K sampled points by their cluster assignment. Contour lines indicate the
underlying free energy surface as computed from the MetaD simulation via reweighting with rbias frame
weights. Contours indicate free energy levels above the minimum from 1 to 11 kcal/mol with a spacing of
2 kcal/mol.
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Figure 3.7: Cluster scans using Actin OPES-MetaD data. Log likelihood as a function of number of
clusters 𝐾 for the original ∼ 1𝜇s OPES-MetaD trajectory (∼21K frames), and using a new set of frames
generated by restarting as described in Section 3.5 (∼ 153K frames).

75



ADP FES computed by evaluating GMM onWT-MetaD samples

In Figure 3.8 we assess an alternative approach to estimate an unbiased FES from a GMM

object. In this case, we presume that the WT-MetaD simulation produced physically reasonable

configurations spanning the configurational landscape of the molecule of interest. To estimate

the FES for ADP, we compute a weighted histogram of (𝜙 and 𝜓 ) where we give as weights

the probability of each frame predicted by the GMM, 𝑃 (𝒙𝑖) given by (3.2). In practice, 𝑃 (𝒙𝑖)

is computed from exponentiating the log-likelihood of frames within the GMM . We normalize

the resulting histogram by samples in each bin, which accounts for the fact that frames were

not generated uniformly by WT-MetaD, resulting in a new distribution 𝑃 (𝜙,𝜓 ). The FES is then

computed as 𝐹 (𝜙,𝜓 ) = −𝑘B ln 𝑃 (𝜙,𝜓 ).
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Figure 3.8: FE profiles obtained fromGMM objects trained on BF=10WT-MetaD data usingMonte Carlo
procedure. Each column corresponds to a different choice of bias and each row corresponds to a different
number of clusters (𝐾 ) used. Black circles placed on the FEs are the centers calculated from the reference
structures corresponding to different clusters, with the size indicating their relative population. Contour
lines indicate the underlying free energy surface as computed from theWT-MetaD simulation, positioned
at 1.0 to 11.0 kcal/mol with a spacing of 2 kcal/mol above the global minimum.
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Error analysis for GMM Free energies
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Figure 3.9: Error estimation for free energies. (A) Root mean-squared error for the free energy of ADP
GMMs computed for different number of clusters and four different weighting schemes. Error bars are
computed from five independent simulations which are fit to separate GMM objects, which are then
used to compute free energy surfaces. The reference free energy surface is that computed by summing
the Gaussian hills from the WT-MetaD simulation. (B) Same as A, except the Jenson-Shannon distance
is computed between the distributions corresponding to 𝑃 (𝜙,𝜓 ) ∝ exp(−𝐹 (𝜙,𝜓 )/(𝑘B𝑇 )), where 𝐹 (𝜙,𝜓 )
corresponds to either the reference free energy or that computed from the GMM objects.
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Figure 3.10: Variance of D-loop in Actin clusters. (A) RMSF for residues 35 to 55 within Actin’s subdomain
2 including the D-loop. These are extracted from the diagonal of Σ𝑁 for each of five clusters shown in
Figure 3.4. (B) The same quantity for residues 40 to 52 which represent the core of the D-loop.
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FEs from GMM for cluster size 5 and 6
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Figure 3.11: FEs from GMM for cluster size 5 and 6. Free energies are computed using BF=10 WT-MetaD
data. Each column corresponds to a different choice of bias and each row corresponds to a different num-
ber of clusters used. These are computed as unweighted histograms from 1M samples obtained from each
GMM object. Black circles placed on the FEs are the centers calculated from the reference structures cor-
responding to different clusters, with the size indicating their relative population. Contour lines indicate
the underlying free energy surface as computed from the WT-MetaD simulation, positioned at 1.0 to 11.0
kcal/mol with a spacing of 2 kcal/mol above the global minimum.

OPES-MetaD simulation of Actin (∼ 1𝜇s)

A B

Figure 3.12: Results from OPES-MetaD simulation of Actin. (A) The 2D FES obtained from ∼1us OPES-
MetaD simulation. Colored circles are the locations for cluster centers weighted according to their relative
population. (B) Time series of LD1 and Dihedral CVs from the same data.
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Configurational Entropies from GMMs

Δ𝑆config/𝑘

# Clusters, 𝐾
choice of weight, 𝐶

uniform bias rbias fbias uniform𝑚𝑜𝑑𝑓

2 2.42 -0.34 -0.31 -0.34 2.42

3 2.18 -0.80 -0.79 -0.80 2.18

4 1.48 -0.82 -0.82 -0.82 1.48

5 2.23 -0.80 -0.78 -0.69 2.24

6 1.52 -0.74 -0.83 -0.80 1.52

Table 3.2: Configurational Entropies. Difference in two configurational entropies computed from prob-
ability distributions in dihedral space, comparing all shapeGMM objects with metadynamics taken as
ground truth (GT). Δ𝑆𝐾,𝐶

config
= 𝑆

𝐾,𝐶

config
−𝑆𝐺𝑇

config
, where 𝐾= # Clusters,𝐶= choice of weight. To compute 𝑆𝐾,𝐶

config
,

1M samples are generated from the shapeGMMobject and a 2D normalized probability distribution is cal-
culated in dihedral space with generated data. All 𝑆config values are calculated using (3.10). uniform𝑚𝑜𝑑𝑓

represents uniform weight shapeGMM objects where the cluster populations are reweighted using final
bias weights after the shapeGMM fit. To reweigh, we update the weights for each cluster in a given
shapeGMM object with the sum of normalized fbias weights for all frames assigned to that cluster in the
uniform scheme. Δ𝑆config is always less for the weighted objects compared to uniform weights irrespective
of cluster sizes.
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4 | Improved data-driven collective variables

for biased sampling through iteration on

biased data

This chapter has been adapted from Ref. [146]

4.1 Introduction

Molecular dynamics (MD) is a powerful approach for studying complex biochemical processes

[147]. However, many critical events, such as protein folding and allosteric regulation of enzymes,

occur on timescales that are often inaccessible to conventional MD due to the so-called rare event

problem [121, 147]. In these cases, the system becomes trapped in an initial metastable state,

unable to overcome high free energy barriers that separate different regions of the free energy

landscape. This limitation is particularly pronounced in large systems with many degrees of

freedom, where fully sampling all relevant states is nearly impossible, even with very long MD

simulations.

Over the years, numerous enhanced sampling techniques have been developed to alleviate

this challenge by facilitating more frequent transitions between different states of a system [55,

148]. One prominent class of these methods relies on collective variables (CVs), where an external

bias is applied as a function of carefully chosen CVs. An ideal CV is thought to capture the
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slowest modes of motion responsible for significant conformational changes in macromolecules.

By applying a bias to enhance fluctuations in one or several CVs, these methods encourage the

system to explore low-probability regions of the free energy surface. However, the effectiveness

of CV-based enhanced sampling techniques depends heavily on the choice of CV, which can be

particularly challenging for complex systems.

There are numerous methods designed to identify “optimal" CVs for a given system, each

with its own strengths and limitations. Some approaches employ simple linear dimensionality

reduction techniques, while others leverage machine learning (ML) and deep learning algorithms

to construct sophisticated nonlinear coordinates [49–52, 54, 62, 149, 150]. Interestingly, most of

these methods rely on training with initial, under-sampledMD simulation data, which often lacks

sufficient information about different metastable states and their transitions. The effectiveness

of these approaches is inherently dependent on the quality of the sampling used for training.

The resulting CV, obtained from this limited dataset, serves as a fixed reaction coordinate that is

subsequently biased in enhanced sampling simulations to achieve a well-converged free energy

surface (FES).

Recent studies have introduced a different strategy for identifying optimal reaction coordi-

nates. These approaches employ an iterative scheme that refines the initially defined CV on-

the-fly by leveraging reweighted data from successive biased simulations [58, 59, 63, 65, 67, 73,

74, 78, 151, 152]. Unlike traditional methods where the CV remains fixed, this adaptive process

continuously improves the coordinate as it is trained on progressively better-sampled data from

each iteration of the biased simulations. This iterative refinement enhances the accuracy and effi-

ciency of the CV, leading to a more reliable exploration of the free energy landscape. While these

methods are highly efficient, they are computationally expensive. The resulting coordinates of-

ten lack clear physical interpretability and are sensitive to hyperparameters and neural network

architecture, requiring careful tuning for optimal performance.

Here, we present an iterative scheme to improve our previously reported posLDA approach
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[54]. The iterative process starts by creating an initial CV using data from short, unbiased MD

simulations. Enhanced sampling is then performed along this coordinate, and the free energy sur-

face is assessed for convergence. If convergence is not achieved, biased samples are reweighted

and clustered using our frame-weighted ShapeGMM [105] method to further refine the coordi-

nate. This process repeats until the free energy surface or another relevant observable converges,

providing an optimal reaction coordinate for efficient sampling. We have applied this protocol

on two systems of increasing complexity- a nine residue peptide (Aib)9 and a 35-amino acid fast-

folding Nle/Nle mutant Villin headpiece (also known as HP35). In both cases, iteration improves

both the stability (meaning more aggressive biasing parameters can be used) and the sampling

ability of the CV. This approach is implemented in tools that we have made available within an

updated ShapeGMMTorch python package [153], with biased simulations available in a number

of MD simulation packages via our sizeshape PLUMED module [54, 82].

4.2 Theory and Methods

4.2.1 Iteration Process

The iterative scheme employed in this work combines our previous three procedures [54, 75,

105] in a straightforward yet effective approach, as illustrated in the flowchart (Figure 4.1). Our

focus is on identifying a reaction coordinate that connects two specific states of a given system.

The process begins with two short unbiased MD simulations initiated from each state (or data

from a long unbiased MD trajectory can be used if both states of interest are sufficiently well rep-

resented). From the resulting labeled MD simulation data, an initial linear discriminant analysis

(LDA) coordinate is constructed. In the next step, an enhanced sampling technique such as Meta-

dynamics (MetaD) or the On-the-fly Probability Enhanced Sampling variant (OPES-MetaD) [83,

84] is used, applying a bias along the LDA coordinate within anMD simulation (see Section 4.2.4).
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1. Short unbiased MD sims 

2. Make LD1 coordinate 

using Atomic Positions

3. Enhance Sampling sim 

biasing LD1 

5. Perform weighted 

ShapeGMM 

6. Make new weighted LD1 

coordinate

4. Check if converged?

YES Stop.

 Output 
final RC 

and FESNO

Figure 4.1: Workflow for iteration scheme. There are 6 steps: 1. Short unbiased MD simulations are
performed starting from two states of interest; 2. use LDA method to make LD1 coordinate; 3. perform
enhanced sampling simulation, biasing LD1 coordinate; 4. check the convergence of FES within a given
threshold; if not converged, 5. apply frame-weighted ShapeGMM on biased data to identify new states;
6. apply frame-weighted LDA between two newly identified states to generate a new weighted LD1 co-
ordinate. Repeat steps 3 to 6 until the simulation converges.

Following this, the convergence of the free energy (FE) is assessed. If the FE surface has not

yet converged, the workflow proceeds to the next stage, where the frame-weighted ShapeGMM

method is used to cluster the biased samples. This method accounts for the non-uniform weights

associated with each biased sample, effectively reweighting them to provide an unbiased estimate

of the clusters. Subsequently, the newly identified clusters are analyzed to determine which two

new clusters best correspond to the original state definitions

A new, weighted LDA coordinate is then computed using reweighted samples from these

clusters. The process iterates through steps 3 to 6 until the free energy surface (FES) or another
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relevant physical observable converges within a predefined threshold. The reaction coordinate

obtained at the end of this iterative process serves as an optimized bias coordinate, enhancing

the efficiency of FES sampling when employed in enhanced sampling simulations. In practice, it

may be difficult to assess convergence of the FES given finite time of sampling available, and so

here we also focus on the efficiency of exploration, namely how frequently the biased CV and

other physically intuitive CVs of interest transit between the values for the two target states.

4.2.2 Weighted ShapeGMM

In shapeGMM, a particular configuration of a macromolecule is represented by a particle

position matrix, 𝒙𝑖 , of order 𝑁 × 3, where 𝑁 is the number of particles being considered for

clustering. To account for translational and rotational invariance, the proper feature for clustering

purposes is an equivalence class,

[𝒙𝑖] = {𝒙𝑖𝑹𝑖 + 1𝑁 ®𝜉𝑇𝑖 :
®𝜉𝑖 ∈ R3, 𝑹𝑖 ∈ SO(3)}, (4.1)

where
®𝜉𝑖 is a translation in R3

, 𝑹𝑖 is a rotation R3 → R3
, and 1𝑁 is the 𝑁 × 1 vector of ones. [𝒙𝑖]

is thus the set of all rigid body transformations, or orbit, of 𝒙𝑖 .

The shapeGMM probability density is a Gaussian mixture given by

𝑃 (𝒙𝑖) =
𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ), (4.2)

where the sum is over the 𝐾 Gaussian mixture components, 𝜙 𝑗 is the weight of component 𝑗 , and

𝑁 (𝒙𝑖 | 𝝁 𝑗 , 𝚺 𝑗 ) is a normalized multivariate Gaussian given by

𝑁 (𝒙𝑖 | 𝝁, 𝚺) =
exp

[
−1

2
(𝑔−1𝑖 𝒙𝑖 − 𝝁)𝑇𝚺−1(𝑔−1𝑖 𝒙𝑖 − 𝝁)

]√︁
(2𝜋) (3𝑁 )

det 𝚺

, (4.3)
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where 𝝁 is the mean structure, 𝚺 is the covariance, and 𝑔−1𝑖 𝒙𝑖 is the element of the equivalence

class, [𝒙𝑖], that minimizes the squared Mahalanbonis distance in the argument of the exponent.

Determining the proper transformation, 𝑔𝑖 , is achieved by translating all frames to the origin and

then determining an optimal rotation matrix. Cartesian and quaternion-based algorithms for de-

termining optimal rotation matrices are known for two forms of the covariance were considered

𝚺 ∝ 𝑰3𝑁 [116, 117] or 𝚺 = 𝚺𝑁 ⊗ 𝑰3 [118, 119], where 𝚺𝑁 is the 𝑁 × 𝑁 covariance matrix and ⊗

denotes a Kronecker product. In this manuscript, we employ only the more general Kronecker

product covariance.

While using input data from an enhanced sampling simulation, we take non-uniform frame

weights into account by performing weighted averages in the ExpectationMaximization estimate

of model parameters { ˆ𝜙 𝑗 , 𝜇 𝑗 , ˆ𝚺 𝑗 }. Considering a normalized set of frame weights, {𝑤𝑖} where∑𝑀
𝑖=1𝑤𝑖 = 1 for𝑀 frames, their contribution to the probability can be accounted for by weighting

the estimate of the posterior distribution of latent variables:

𝛾𝑍𝑖 ( 𝑗) = 𝑤𝑖
ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )∑𝐾
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙 𝒊 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
. (4.4)

The frame weight will propagate to the estimate of component weights, means, and covariances

in the Maximization step through 𝛾𝑍𝑖 ( 𝑗):

ˆ𝜙 𝑗 =

𝑀∑︁
𝑖=1

𝛾𝑍𝑖 ( 𝑗) (4.5)

𝝁 𝑗 =

∑𝑀
𝑖=1 𝛾𝑍𝑖 ( 𝑗)𝑔−1𝑖, 𝑗 𝒙𝑖∑𝑀

𝑖=1 𝛾𝑍𝑖 ( 𝑗)
(4.6)

ˆ
𝚺 𝑗 =

∑𝑀
𝑖=1 𝛾𝑍𝑖 ( 𝑗)⟨ ˆ𝚺𝑁 ⟩𝑖∑𝑀

𝑖=1 𝛾𝑍𝑖 ( 𝑗)
⊗ 𝑰3 (4.7)
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Additionally, the log likelihood per frame is computed as a weighted average

ln(𝐿) =
𝑀∑︁
𝑖=1

𝑤𝑖 ln

(
𝐾∑︁
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙𝑖 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
)
. (4.8)

4.2.3 Frame-weighted LDA (wLDA)

LDA is a supervised classification technique that reduces dimensionality of the data by means

of projection into a lower dimensional space [31]. It does so by simultaneously maximizing the

between class scatter matrix andminimizing thewithin class scatter matrix. In our prior work, we

have demonstrated that application of LDA on aligned particle positions produce a good one di-

mensional reaction coordinate that best separates two states. In Frame-weighted LDA approach,

one can use input data obtained from enhanced sampling by incorporating nonuniform weights

of the samples to account for relative probabilities of different classes. To do so, we must include

weights corresponding to each configuration in the while computing the scatter matrices. For 𝐾

different clusters, this is achieved by first computing the weighted within-cluster scatter matrix,

𝑺𝑤𝑊 =

𝐾∑︁
𝑖=1

∑︁
𝑗∈𝑁𝑖

𝑤 𝑗 (𝒙 𝑗 − 𝝁𝑖) (𝒙 𝑗 − 𝝁𝑖)𝑇 , (4.9)

and the between-cluster scatter matrix,

𝑺𝑤𝐵 =

𝐾∑︁
𝑖=1

𝑊𝑖 (𝝁𝑖 − 𝝁) (𝝁𝑖 − 𝝁)𝑇 , (4.10)

where 𝝁𝑖 =

∑
𝑗∈𝑁𝑖 𝑤 𝑗𝒙 𝑗∑
𝑗∈𝑁𝑖 𝑤 𝑗

is the weighted mean of cluster 𝑖 , {𝑤 𝑗 } are the normalized weights of

individual samples such that

∑𝑀
𝑗=1𝑤 𝑗 = 1 and 𝑁𝑖 is the number of samples that belong to cluster

𝑖 . 𝝁 =

∑𝐾
𝑖=1

∑
𝑗∈𝑁𝑖 𝑤 𝑗𝒙 𝑗∑𝐾

𝑖=1

∑
𝑗∈𝑁𝑖 𝑤 𝑗

is the overall weighted global mean and𝑊𝑖 =
∑
𝑗∈𝑁𝑖 𝑤 𝑗 is the total weight of

samples in cluster 𝑖 . The simultaneous minimization of within-cluster scatter and maximization

of between cluster scatter can be achieved by finding the transformation 𝐺 that maximizes the
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quantity

Tr

(
(𝐺𝑇 𝑺𝑤𝑊𝐺)

−1𝐺𝑇 𝑺𝑤𝐵𝐺
)
. (4.11)

This maximization can be achieved through an eigenvalue/eigenvector decomposition but such

a procedure is only applicable when 𝑺𝑤
𝑊

is non-singular. The LDA method was reformulated in

terms of the generalized singular value decomposition (SVD) [80] extending the applicability of

the method to singular 𝑺𝑤
𝑊

matrices such as those encountered when using particle positions.

We have implemented this modified approach in a WeightedLDA python package [154]. The

result of an wLDA procedure on two labeled states will be a vector, 𝒗, of coefficients that best

separate the two states. These coefficients can be used directly for sampling within our PLUMED

sizeshape module.

4.2.4 Enhanced sampling with LDA coordinates

The LDA coordinate used here is a dot product of the vector 𝒗 with the atomic coordinates

𝒙 − 𝝁 ans it is given by [54],

𝑙 (𝒙) = 𝒗 ·
(
𝑹 · (𝒙 (𝑡) − ®𝜉 (𝑡)) − 𝝁

)
(4.12)

To compute the value of the LDA coordinate 𝑙 on the fly, we first translate 𝒙 (𝒕) by
®𝜉 (𝑡) =

1

𝑁

∑𝑁
𝑖=1 ®𝑥𝑖 (𝑡) − 1

𝑁

∑𝑁
𝑖=1 ®𝜇𝑖 (𝑡), the difference in the geometric mean of the current frame and that

of the reference configuration. Then, we compute 𝑹 (𝑡), the rotation matrix which minimizes the

Mahalanobis difference between 𝒙 (𝒕) − ®𝜉 and 𝝁, for a given 𝚺, as described in Ref. [75].

Enhanced sampling simulations on LDA coordinates were performed using Well-tempered

Metadynamics (WT-MetaD), andOn the Fly Probability Enhanced Sampling-Metadynamics (OPES-

MetaD) as implemented in PLUMED [25, 81–83].

WT-MetaD works by adding a bias formed from a history dependent sum of progressively
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shrinking Gaussian hills [24, 84]. The bias at time 𝑡 for CV value 𝑠𝑖 is given by the expression

𝑉 (𝑠𝑖, 𝑡) =
∑︁
𝜏<𝑡

ℎ𝑒−𝑉 (𝑠𝑖 ,𝜏)/Δ𝑇𝑒−
𝑠 (𝒙 (𝜏 ) )−𝑠𝑖 )2

2𝜎2 , (4.13)

whereℎ is the initial hill height, 𝜎 sets the width of the Gaussians, and Δ𝑇 is an effective sampling

temperature for the CVs. Rather than setting Δ𝑇 , one typically chooses the bias factor 𝛾 = (𝑇 +

Δ𝑇 )/𝑇 , which sets the smoothness of the sampled distribution [24, 84]. Asymptotically, a free

energy surface (FES) can be estimated from the applied bias by 𝐹 (𝑠) = − 𝛾

𝛾−1𝑉 (𝑠, 𝑡 → ∞) [84, 85]

or using a reweighting scheme [84, 86].

OPES-MetaD applies a bias that is based on a kernel density estimate of the probability dis-

tribution over the whole space, which is iteratively updated [25, 83]. The bias at time 𝑡 for CV

value 𝑠𝑖 is given by the expression

𝑉 (𝑠𝑖) = 𝑘𝐵𝑇
(
𝛾 − 1

𝛾

)
log

(
𝑃𝑡 (𝑠𝑖)
𝑍𝑡

+ 𝜖
)
. (4.14)

Here in the prefactor,𝑇 is the temperature, 𝑘𝐵 is Boltzmann’s constant, and𝛾 is the bias factor.

𝑃𝑡 (𝑠) is the current estimate of the probability distribution,𝑍𝑡 is a normalization factor that comes

from integrating over sampled 𝑠 space. Finally, 𝜖 = exp

(
Δ𝐸
𝑘𝐵𝑇

𝛾

𝛾−1

)
is a regularization constant that

ensures the maximum bias that can be applied is Δ𝐸.

As in WT-MetaD, 𝐹 (𝑠) can be directly estimated from 𝑉 (𝑠) by 𝐹 (𝑠) ≈ − 𝛾

𝛾−1𝑉 (𝑠) or through a

reweighting scheme [25]. Details of the sampling parameters used for each system are given in

Section 4.5.
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Figure 4.2: Time dependence of LD1 coordinates for (Aib)9 iterations. 500 ns of data were used for clus-
tering and training of the next LD coordinate.

4.3 Results and Discussion

4.3.1 Performing iterations on (Aib)9

(Aib)9 is a nine residue peptide formed from the achiral 𝛼-aminoisobutyryl that exhibits two

well defined metastable states: left- and right-handed 𝛼-helices. Due to the symmetry inherent

in a helix made of achiral building blocks, both states must have equal statistical likelihood. In

work by us and others [54, 74, 93], this symmetry was leveraged to benchmark sampling and

clustering methods. Here, we applied the proposed iterative scheme on this system to assess the

improvement of the reaction coordinate over successive iterations.
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Figure 4.3: (Aib)9 iteration results. (A) Trajectory of the physically motivated 𝜁 with time for successive
iterations, (B) Free energy vs. 𝜁 for successive iterations estimated after 500 ns of MD, and that same
data was used to perform the iteration. Each iteration shows transitions between left and right handed
states, but iteration four shows the most transitions per unit time and the most symmetric free energy
profile from the limited sampling, (C) Representative structures from iteration 1, showing transitions
from left- (L) to right- (R) helical states of of (Aib)9. Intermediate (I) shows representative snapshots of
configurations having 𝜁 ≈ 0.

The iterative process begins with an initial linear discriminant (LD1) coordinate derived from

two short molecular dynamics (MD) simulations starting from the left- and right-handed states.

This is followed by a WT-MetaD simulation biasing this coordinate (for details, see Ref. [54]).

The LD coordinate exhibited several transitions between extreme values representing the left

and right helical states (Figure 4.2, top) within 500 ns. We subsequently performed three more

iterations, with each WT-MetaD simulation also running for 500ns (Figure 4.2).

To perform iterations, we scan over possible numbers of clusters, and compute the log-likelihood

for each clustering as shown in Figure 4.7. These data were used to pick the “best” number of

clusters as described in Ref. [75]. Figure 4.8 displays the calculated Bhattacharyya distances for all
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newly identified clusters relative to the initial states, for the last three iterations (see Section 4.7

for details). The two states nearest to either the left or right side are selected to construct a new

weighted LD1 coordinate for the subsequent iteration. The magnitudes of particle displacement

vectors acting on individual atoms for all LD1 coordinates are depicted in Figure 4.9.

From these data, we are also able to compute FE profiles along each LD coordinate, as shown

in Figure 4.10. Because the coordinate is changing each time, and we do not have a long unbi-

ased reference data set to check convergence, we therefore focus on a previously defined helicity

coordinate, 𝜁 , that is the sum of the five central 𝜙 dihedral angles [74]. Values of 𝜁 ∼ −5 and

𝜁 ∼ +5 correspond to the right- and left-handed helices, respectively. This CV serves as a con-

sistent reference coordinate to track state transitions and assess convergence of the FES along it

(Figure 4.3).

Figure 4.3 illustrates the transitions along 𝜁 during WT-MetaD simulations across all four

iterations, along with the corresponding one-dimensional reweighted free energy profiles. The

first coordinate is highly sensitive to the application of bias forces, as previously discussed in

Ref. [54], meaning that gentle biasing had to be applied to prevent “crashing” due to rapid changes

in forces. This resulted in relatively slow sampling of the configurational space. In contrast, here

we observed that the CVs obtained in subsequent iterations are substantially more stable and

effective in facilitating extensive sampling of the free energy surface (FES) when employed with

higher hill heights and bias factors. For the specific values of the MetaD parameters used, refer to

Section 4.5. Notably, state transitions increase significantly from the second to the fourth iteration

with consistent MetaD parameters.

To test whether free energy profiles along each coordinate would eventually converge, we

extended each simulation to 1.5𝜇s (Figure 4.11). Figure 4.12 displays 𝜁 fluctuations over time and

show that in this time period, all CVs exhibit a FE profile with left and right states having equal

free energy minima within 0.5 kcal/mol.

As a final experiment on this system, we explored the effect of enforcing equal contributions
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from the two states when constructing the weighted LD1 coordinate (i.e., assigning each state a

combined sample weight of one). This approach was tested for iteration 2 using biased data from

the first enhanced sampling simulation. The resulting coordinate performs comparably to the

original, as shown in Figure 4.13. These findings demonstrate that iterative refinement, utilizing

enhanced sampling data from each step, systematically improves reaction coordinates for (Aib)9,

enhancing the exploration of its conformational landscape.

4.3.2 Performing iterations on HP35

We previously applied our shapeGMM clustering approach on a 305 𝜇s long MD trajectory of

the fast-folding Nle/Nle mutant of HP35, obtained from the D.E. Shaw Research Group. For our

analysis, we selected a six-state representation of the system, which provides an interpretable

depiction of the folding and unfolding process. Details of the clustering methodology and cross-

validation are discussed in Ref. [75]. The six-state model was trained using 25,000 frames sampled

from a dataset of approximately 1.5 million frames. In our subsequent study, we demonstrated

that a single folding/unfolding coordinate could be derived by performing LDA on frames as-

signed to the folded and unfolded states from this six-state representation [54]. Remarkably, this

coordinate—trained exclusively on two states—was sufficient to characterize transitions between

the folded and unfolded states through physicallymeaningful configurations. Moreover, it proved

to be an effective sampling coordinate when biased in OPES-MetaD simulations [54].

Here, we have implemented the proposed iteration scheme on the system to assess the ef-

fectiveness of our approach. The first iteration aligns with the methodology employed in our

prior work. Following the procedure outlined in Section 4.2.1, we conducted a total of three it-

erations. In the second and third iterations only 2.5 𝜇s, 1.5 𝜇s of biased data from the previous

runs, respectively, were used to train the new wLDA coordinates. The resulting cluster scan for

each training iteration are illustrated in Figure 4.14. For the second iteration, the training pro-

cess utilized 44,000 samples, with an additional ∼5,000 samples reserved for cross-validation. In
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Figure 4.4: HP35 iteration results. (A) Fluctuations of LD coordinates with time from extended OPES-
MetaD runs for HP35. Horizontal black dashed and grey dotted lines in each case indicate the approximate
locations for the folded and unfolded states respectively. The simulations for iteration 1 ran for 10 𝜇s and
remaining two ran for approximately 3.5 𝜇s. (B) FE as a function of LD1 for successive iterations. The
black dashed line represents the unbiased free energy estimate derived from D.E. Shaw Research data
[89]. The improved alignment in iteration 2 and 3 indicates better convergence and enhanced sampling
efficiency. The insets highlight representative structures of the folded and unfolded clusters (both taken
from iteration 2), illustrating the conformational changes during the transition. Protein conformations
are colored according to their secondary structure.

the final iteration, the dataset was expanded to 90,000 training samples, supplemented by 10,000

samples for cross-validation. In each iteration, we computed the Bhattacharyya distance between

the newly generated clusters and our predefined folded and unfolded states (see Section 4.7). The

resulting 𝐷𝐵 data, presented in Figure 4.15, quantifies the similarity between the two clusters.

The clusters most closely resembling either the folded or unfolded states are selected. The

weighted LDA coordinates derived between the new states at each iteration differ from one an-

other, and the coefficients of the LD1 vectors are illustrated in Figure 4.16. The variation of the

LD1 coordinates from OPES-MetaD simulations, performed for every iteration and the corre-
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sponding free energy (FE) profiles computed along them are displayed in Figure 4.17. Addition-

ally, Figure 4.18 shows the reweighted 2D free energy surface (FES) projected onto the RMSD

space, calculated using those biased simulations.

To assess free energy convergence, eachOPES-MetaD simulationwas extended, and Figure 4.4

presents the time dependence of LD1 coordinates and 1D FE profiles obtained along them from

the extended simulations for all iterations. While the first simulation ran for approximately 10

𝜇s, we achieved significant convergence to the reference free energy (FE) in the last two iter-

ations within just 3.5 𝜇s. This suggests a notable improvement in the effectiveness of the new

coordinates used in iterations 2 and 3. To further evaluate this improvement, we computed the

2D free energy surfaces (FES) projected along the RMSD coordinates relative to Helices 1 and 3

for both simulations, as shown in Figure 4.5. The results clearly demonstrate that the new wLDA

coordinates served as a more efficient sampling coordinate. The system was able to explore a

broader region of the free energy landscape, showing strong agreement with the reference FES

derived from D.E. Shaw Research data (depicted as contour lines).
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Figure 4.5: Convergence of FES acrossmultiple iterations of HP35. 2D FES from three iterations, projected
along the RMSD with respect to Helices 1 and 3. The color scale represents free energy in kcal/mol.
Contour lines indicate the reference free energy estimate derived from D.E. Shaw Research data [89]. The
FES from iteration 2 and 3 demonstrates improved sampling, capturing a broader region of the free energy
landscape with better agreement to the reference.

94



4.4 Conclusions and Outlook

Our results demonstrate that LDA coordinates based on atomic positions can be iteratively

improved using data generated by Metadynamics-like sampling. Iteration improves both the

stability and sampling efficiency of the resulting CV. We note that these two effects are coupled,

in that improved stability of the CV also allows us to bias more quickly, which improves sampling

efficiency. Yet in our studies, we also find this is not the only effect, and the CV also allows better

exploration even when using a similarly gentle MetaD bias to that from earlier iterations.

We speculate that this results from a better estimate of the positional covariance matrix

around each metastable state, which produces a more smooth transition between the two tar-

geted states, however this has been difficult to prove so far and requires further investigation.

Although our results are promising, some challenges and questions remain. One question in

any such approach is: how long should each stage of the iteration be? If a stage of the itera-

tion were run exhaustively to convergence, then there would be no need to iterate to produce

a more efficient coordinate. Our results show for these examples that it is possible to improve

the coordinate by using enough sampling time to have one to two round trip visits to each state.

However, it remains to be investigated whether that generalizes to more challenging systems, and

also whether it produces better results than running using the first CV for as long as all of the

iterations combined. We believe that there is an actual improvement in CV quality that results

in better estimates, for example in Figure 4.5, where the target unfolded state at the top right is

barely populated even after 10 microseconds of sampling for iteration one, but is properly given

weight in a much shorter simulation on the second iteration.

Going forward, we would like to build on this approach for sampling more challenging sys-

tems. When going to a larger system, we believe based on our experience that a single linear

coordinate will not be sufficient to capture all the slow degrees of freedom when transitioning

between two states. We therefore would like to investigate combining iterative improvement of
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one posLDACV that separates the two states of interest, with other CVs that promote exploration

of other large domain motions. We also would like to investigate cases that include metastable in-

termediates, to see whether one single posLDA between the end states is a good CV for sampling,

or whether we should in fact combine multiple posLDACVs defined pairwise betweenmetastable

states, which would allow us to better sample from e.g. a starting state to an intermediate and

then from the intermediate to a final state via a more physically realistic route.

4.5 Simulation Details

All simulations were performed using GROMACS 2020.4 [102] with PLUMED 2.9.0-dev [81,

82]. All analysis scripts, jupyter-notebooks and PLUMED input files used in the study are cur-

rently available in our paper’s GitHub repository https://github.com/hocky-research-group/

Sasmal_posLDA_iteration, and will also be available on Zenodo and PLUMED-Nest [82] on

publication.

(Aib)9 Simulations

Equilibrated inputs for (Aib)9 were provided by the authors of Ref. [74]. In brief, simula-

tions using the CHARMM36m forcefield and TIP3P water [104]. MD simulations are performed

in NPT with a 2 fs timestep at 𝑇 = 400𝐾 . The MetaD parameters used for first iteration were

HEIGHT=0.005, BIASFACTOR=2, SIGMA=0.43, PACE=500. For all three remaining iterations

we used, HEIGHT=0.70, BIASFACTOR=8, SIGMA=0.55 and PACE=500 and a multiple time step

STRIDE for biasing of 2 [103]. Quadratic upper and lower walls were applied ∼ ±10.0 of max-

imum and minimum value for each LD1 coordinate respectively, with a bias coefficient of 125

kcal/mol/Å
2
. Complete details are provided in PLUMED input files on GitHub.
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HP35 Simulations

A 305 𝜇s all-atom simulation of Nle/Nle HP35 at𝑇 = 360𝐾 from Piana et al.[89] was analyzed.

The simulation was performed using the Amber ff99SB*-ILDN force field and TIP3P water model.

In that simulation, protein configurations were saved every 200 ps, for a total of ∼1.5M frames.

For our simulations, we solvate and equilibrate a fresh system using the same forcefield at 40mM

NaCl. Minimization and equilibration are performed using a standard protocol
1
, at which point

NPT simulations are initiated at 𝑇 = 360𝐾 . mdp files for all steps of this procedure and the

topology files are all available in the GitHub of our previous work [54]. All the OPES-MetaD

simulations are performed with 𝛾 = 8, Δ𝐸 = 10 kcal/mol, pace of 500 steps, and a biasing multiple

time step [103] stride of 2. Quadratic walls were applied for each LD1 coordinate, specific to its

range between upper and lower limits, with a bias coefficient of 125 kcal/mol/Å
2
.

4.6 From Local Contributions to Global Bias

In this section, we describe an enhanced sampling strategy that integrates ShapeGMM clus-

tering in size-and-shape space with a dynamic biasing approach. The method constructs a global

bias potential along selected CVs by a nonlinear combination of local contributions from dif-

ferent metastable states, weighted by the posterior probability of the current state [78]. First,

we perform ShapeGMM clustering to obtain the conformational ensembles embedded in high

dimensional size-and-shape space. The probability of configurational space is approximated as -

𝑃 (𝒙) = 𝜙0 +
𝐾∑︁
𝑗=1

𝜙 𝑗𝑁 (𝒙 | 𝝁 𝑗 , 𝚺 𝑗 ), (4.15)

where the sum is over the 𝐾 Gaussian mixture components, 𝜙 𝑗 is the weight of component 𝑗 , and

𝑁 (𝒙 | 𝝁 𝑗 , 𝚺 𝑗 ) is a normalized multivariate Gaussian given by (4.3). The additional term 𝜙0 in

1http://www.mdtutorials.com/gmx/lysozyme/index.html
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(4.15), is a regularization parameter representing probability of not belonging to any metastable

states. The optimal value of 𝜙0 is selected following the procedure described in Ref. [78]. The

posterior probability is given as,

𝛾 𝑗 (𝒙) =
ˆ𝜙 𝑗𝑁 (𝒙 | 𝝁 𝑗 , ˆ𝚺 𝑗 )

𝜙0 +
∑𝐾
𝑗=1

ˆ𝜙 𝑗𝑁 (𝒙 | 𝝁 𝑗 , ˆ𝚺 𝑗 )
(4.16)

To further reduce the dimensionality and characterize the states in a lower dimensional space,

we use Mahalanobis distances relative to each cluster’s reference structure or Principal Compo-

nent Analysis (PCA). A well-tempered metadynamics (WT-MetaD)-like bias is then constructed

in this reduced CV space by nonlinearly combining local bias contributions from each cluster.

The total bias potential as a function of CVs, 𝒔 (𝒙) at time 𝑡 is given as [78],

𝑉 (𝒔, 𝑡) = 𝑣0(𝒔, 𝑡) 𝛾0(𝒔) +
𝐾∑︁
𝑗=1

𝑣 𝑗 (𝒔, 𝑡) 𝛾 𝑗 (𝒔) (4.17)

𝑣 𝑗 (𝒔, 𝑡) is the local bias contribution from the 𝑗𝑡ℎ cluster,

𝑣 𝑗 (𝒔, 𝑡) = ℎ
∑︁
𝑡 ′<𝑡

𝑒−𝑉 (𝒔 (𝑡 ′),𝑡 ′)/Δ𝑇𝑒−
(𝒔 (𝒙 )−𝒔 (𝑡 ′ ) )2

2𝜎2 ×
𝛾 𝑗 (𝒔)∑𝐾
𝑗=0 𝛾 𝑗 (𝒔)2

. (4.18)

Here ℎ is the initial hill height, 𝜎 sets the width of the gaussians, and Δ𝑇 is an effective sampling

temperature for the CVs, related to bias factor 𝛾 = (𝑇 + Δ𝑇 )/𝑇 , which sets the smoothness of

the sampled distribution. 𝛾0(𝒔) =
𝜙0

𝜙0+
∑𝐾
𝑗=1 𝜙 𝑗𝑁 (𝒙 |𝝁 𝑗 ,𝚺 𝑗 )

refers to the probability of being in back-

ground basin (not associated with any states), while 𝑣0(𝒔, 𝑡) = ℎ
∑
𝑡 ′<𝑡 𝑒

−𝑉 (𝒔 (𝑡 ′),𝑡 ′)/Δ𝑇 × 𝛾0 (𝒔)∑𝐾
𝑗=0 𝛾 𝑗 (𝒔)2

corresponds to the bias potential experienced in this region. Since not all physically meaningful

clusters may be identified initially, the algorithm can be run iteratively, using reweighted sam-

ples from biased simulations at each step withframe-weighted ShapeGMM to identify find new

clusters and refine the existing ones. The free energy landscape can be estimated using iterative

trajectory reweighting scheme (ITRE) method[128].
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We tested this approach on alanine dipeptide in vacuum without iterative refinement. Two

short 20nsMD simulationswere initiated from𝐶7eq and𝐶7ax states, followed by 2-state ShapeGMM

clustering on the combined trajectory. PCA was performed separately for each cluster using

B C

A

𝛾

Figure 4.6: Alanine Dipeptide: Results from nonlinear combination of local biases. (A) 2D scatter plot
of configurations projected onto dihedral angles colored by posterior probabilities 𝛾 𝑗 . Values of 𝛾 𝑗 ≈ 1

indicate the high probability of belonging to 𝐶7eq or 𝐶7ax states, while 𝛾0 ≈ 1 corresponds to transitions
regions. (B) Time evolution of values of 𝛾 𝑗 showing transitions between states via intermediate regions of
high energy. (C) Reweighted FES along dihedral angles computed using the ITRE method [128]. Crosses
mark the centers of the two metastable states.

aligned atomic coordinates, with the first two principal components used as CVs:

𝑠𝑐 𝑗 (𝒙, 𝑡) = 𝒗𝑐 .(𝑹 .(𝒙 (𝑡) − ®𝜁 (𝑡)) − 𝝁 𝑗 ); 𝑐 = 1, 2 (4.19)

where 𝝁 𝑗 is the mean of 𝑗𝑡ℎ cluster, 𝑹 is the optimal rotation matrix that minimizes separation
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between current configuration and cluster mean and
®𝜁 (𝑡) is the translational alignment. 𝒗𝑐 is a

list of normalized coefficients for the particular principal component. This yielded a total of 𝑗 × 2

CVs. A 50 ns simulation was then performed using the bias potential defined in Eqs. (4.17) and

(4.18). In order to do this, we introduced a new bias type in PLUMED, which was implemented

by Prof. Gareth Tribello in his “hack-the-tree” branch of PLUMED. The codes for computing this

bias, are available upon request
2
. The results, shown in Figure 4.6, demonstrate efficient sam-

pling between metastable states. Figure 4.6(A) illustrates the sampled configurations colored by

their 𝛾 values, where 𝛾 𝑗 ≈ 1 indicates high probability of belonging to the 𝑗𝑡ℎ cluster and 𝛾0 ≈ 1

corresponds to transition regions. Figure 4.6(B) tracks the time evolution of 𝛾 values as the sys-

tem transitions between states. Figure 4.6(C) displays the reweighted FES along dihedral angles,

confirming efficient sampling of rare transitions.

While this method shows promise, challenges remain in selecting an optimal 𝜙0, particularly

due to the asymmetric shapes of clusters in high-dimensional space, which can lead to config-

urations being incorrectly assigned to the background region. Additionally, future work should

explore couple of directions- iterative refinement to dynamically update clusters during sam-

pling, alternative descriptors beyond PCA for improved state discrimination and optimized bias

protocols to enhance sampling efficiency.

4.7 Supplementary Figures

Bhattachrayya Distance

The Bhattacharayya distance is a statistical measure used to quantify the similarity between

two probability distributions. It is derived from the Bhattacharyya coefficient which measures

the amount of overlap between two distributions. For any two given continuous distributions

2https://github.com/SasmalSubarna/maha_atlas_project
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𝑝 (𝑥) and 𝑞(𝑥), the coefficient is defines as -

𝐵𝐶 (𝑝, 𝑞) =
∫

𝑑𝑥𝑝 (𝑥)𝑞(𝑥) (4.20)

and the distance 𝐷𝐵 is given by,

𝐷𝐵 (𝑝, 𝑞) = − ln (𝐵𝐶 (𝑝, 𝑞)) (4.21)

𝐷𝐵 is a symmetric quantity that means 𝐷𝐵 (𝑝, 𝑞) = 𝐷𝐵 (𝑞, 𝑝). It goes to zero for identical distri-

butions and goes to infinity for entirely dissimilar distributions. It is assumed that the compared

distributions are well defined and normalized. If the distributions are too different from each

other, the distance can be very large.

If 𝑝 (𝑥), 𝑞(𝑥) are multivariate normal distributions such as 𝑝 (𝑥) ∼ N (𝜇𝑝, Σ𝑝) and 𝑞(𝑥) ∼

N (𝜇𝑞, Σ𝑞), then it can be derived to show that 𝐷𝐵 (𝑝, 𝑞) is given as,

𝐷𝐵 (𝑝, 𝑞) =
1

8

[
(𝝁𝑝 − 𝝁𝑞)𝑇𝚺−1(𝝁𝑝 − 𝝁𝑞)

]
+ 1

2

ln

[
det(𝚺)√︁

det(𝚺𝑝) det(𝚺𝑞)

] (4.22)

𝝁𝑝 , 𝝁𝑞 are the mean vectors corresponding to distributions 𝑝 (𝑥) and 𝑞(𝑥) with covariances 𝚺𝑝 , 𝚺𝑞

respectively. And 𝚺 =
𝚺𝑝+𝚺𝑞

2
, is the mean of two covariances. The first term in the Eq.4.22 is the

Mahalanobis distance between two distributions that quantifies the difference in their locations.

The second term accounts for the difference in the shapes of the two distributions and is ameasure

of the divergence due to differences in the spreads and orientations.

For this work, we implemented the Bhattacharayya distance metric in the similarities

module of the shapeGMMTorch package [153].
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Training curves for (Aib)9 iterations
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Figure 4.7: Cluster scans from four successive iterations of (Aib)9. Iteration 2,3 and 4 were performed
with data from biased simulations, using 90k training samples and 10k samples for cross validation. First
iteration was performedwith combined data from two short 20ns longMD simulations initiated form both
left and right states. In first iteration, we used 20k frames for training along with 20k for cross validation.
Black curves represent 2𝑛𝑑 derivatives(with error bars) of log likelihood with respect to number of clusters
and minimum value indicates an optimal choice for number of clusters.
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Bhattacharyya Distances for (Aib)9
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Figure 4.8: Bhattacharyya Distances for (Aib)9. Logarithm of distances are computed for all clusters
with respect to initial definitions of left and right helical states at every iteration. It gives a measure of
similarity between two multivariate normal distributions that represent a cluster. Any two clusters with
lower values of ln𝐷𝐵 are close to each other and those with higher values are far away from each other.
It provides a consistent way of defining new left and right states at every iteration in accordance with
initial definitions.

103



Coefficients of LD coordinates from (Aib)9 iterations
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Figure 4.9: Comparing coefficients of LDA coordinates for (Aib)9. Weights shown are the magnitudes of
particle displacement vectors acting on each atom fromLD1 after each iteration. In case of (Aib)9, cartesian
coordinates of total 23 backbone atoms are used to define LD1 coordinate which is a linear combination
of 23 × 3 = 69 features with 69 real coefficients. Hence, each particle has a displacement vector of 3
components associated with it. In this figure, it shows the magnitude of those vectors. Weights are
considered as contributions of different atoms in making the coordinate. The atoms with larger weights
have a larger effect when biasing while those with smaller weights contribute less.
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FEs vs. LD1 for (Aib)9 iterations
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Figure 4.10: FE vs. LD1 obtained from (Aib)9 iterations. Free energies are computed from 500ns long
WT-MetaD simulations at each iteration.
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FEs and time dependence of LD coordinates from (Aib)9 1.5𝜇s simulations

A B

Figure 4.11: Results from 1.5𝜇s simulations of (Aib)9, for LD1 coordinates. Each WT-MetaD simulation
from successive iterations were further extended upto 1.5 𝜇s. (A) Fluctuations of LD1 with time and (B)
FE profiles computed along LD1 in each case by summing all Gaussian hills deposited over the course of
the simulations.
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FEs and time dependence of 𝜁 from (Aib)9 1.5𝜇s simulations

A B

Figure 4.12: Results from 1.5𝜇s simulations of (Aib)9, for 𝜁 coordinate. (A) fluctuations of 𝜁 with time
and (B) converged reweighted free energy profiles computed from 1.5𝜇s long WT-Metad simulations.
Efficient sampling between left and right states is observed in all cases. All free energy profiles along 𝜁
are converged and symmetric.
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Implementing Equal Weights for left and right helix
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Figure 4.13: Equal weights for left and right helices of (Aib)9. Results from a 500ns long WT-MetaD sim-
ulation by biasing LD1 coordinate which is obtained by implementing equal total probability for samples
belonging to left and right states. Equal total probability means that sum of weights for all the samples
from either left or right state is equal to 1. To test this we used WT-MetaD data from first iteration. After
computing the correct weights for samples from biased data, here we normalized the weights separately
for left and right states before feeding it into LDA algorithm, so that each state contributes equally to
the coordinate. (A) LD1 vs. time and free energy profile calculated along LD1 and (B) 𝜁 vs. time along
with FES along 𝜁 . The MetaD parameters used for this simulation are, HEIGHT=0.01, BF=8, PACE=2000,
SIGMA=0.55 and STRIDE=2. Two quadratic walls were applied at LD1=+60.0 and LD1=-60.0 with force
constant of 125.0 kcal/mol/Å2.
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Training curves for HP35 iterations
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Figure 4.14: Cluster scans for last two iterations of HP35. The first scan (reported in Ref. [75], not shown
here) was performed with 305𝜇s long MD simulation trajectory of HP35 provided by D. E. Shaw Research
[89]. The second scan was performed with 2.5𝜇s long OPES-MetaD simulation data with 44k frames for
training along with ∼5k frames for cross validation. The third scan was performed with 90k samples for
training and 10k samples for cross validation, using the biased data from previous 1.5𝜇s long OPES-MetaD
simulations. Training curves with error bars are shown in red and cross validations curves with error bars
are shown in blue. Black curves represent 2𝑛𝑑 derivatives(with error bars) of log likelihood with respect
to number of clusters and minimum value indicates an optimal choice for number of clusters.
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Bhattacharyya Distances for HP35
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Figure 4.15: Bhattacharyya Distances for HP35. Logarithm of Bhattacharyya distance for all clusters (see
Figure 4.14) in our HP35 iterations with respect to initial definitions of folded and unfolded clusters.
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Coefficients of LD coordinates from HP35 iterations
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Figure 4.16: LDA weights at each iteration for HP35. Here, input cartesian coordinates consist of 101
backbone atoms, which is a linear combination of 101 × 3 = 303 features with 303 real coefficients.
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LD1 time dependence and FE vs LD1 for HP35 iterations

Figure 4.17: Results fromHP35 iterations. (A) Trajectory of LD1 obtained fromOPES-MetaD simulations
in three successive iterations of HP35. The first simulation is 2.5𝜇s and the remaining two are 1.5𝜇s long.
Note that the coordinate obtained at each iteration is different than others. (B) FE profiles computed in
each oteration. FE profiles calculated using 500ns, 1500ns and 2500ns long data are shown in red, blue,
grey colors respectively. In each case for comparison, we also computed a reference FE using 305𝜇s long
unbiased MD simulation of villin, provided by D. E. Shaw Research [89]. The reference FE profiles are
shown in black dashed lines.

112



2D FES on RMSD space from HP35 iterations
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Figure 4.18: Free energy landscapes obtained fromHP35 simulations. 2D reweighted FES projected along
RMSDs (computed using only backbone atoms) with respect to helix-1 and helix-3. To compute the free
energy profiles, OPES-MetaD simulation data generated at each iteration is used. The first one is 2.5𝜇s
long and the later two are 1.5𝜇s long only (see Figure 4.17). This also illustrates the input data which is
used in an iteration to generate the next wLDA coordinate.
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5 | Conclusion

In this thesis, we have demonstrated three key contributions. First, we illustrated that apply-

ing Linear Discriminant Analysis to atomic positions of two metastable states of a biomolecular

system, produces a good collective variable for use in enhanced samplingmethods, enabling rapid

convergence of the free energy profile. While, the resulting collective variable has proven to be

efficient, there is still room for improvements that could be explored, such as using a multi-state

LDA approach or combining multiple LDA coordinates to improve sampling efficiency. Another

promising direction is iteratively refining the LDA coordinate by incorporating reweighted data

from biased simulations to train an improved weighted LDA coordinate. Another important as-

pect is the use of pairwise LDA coordinates defined for intermediate states of a system, to explore

the complete free energy path connecting two end states of the system.

Second, we have introduced the frame-weighted ShapeGMM method, which enables the ex-

traction of unbiased conformational ensembles directly from biased simulations. This is par-

ticularly useful when long unbiased MD simulations, capturing multiple transitions between

metastable states are unavailable and one has to rely on biased simulations to explore the full

conformational landscape. The method produces an estimate of unbiased high-dimensional prob-

ability distribution that serves as a generative model, allowing us to draw new samples from

metastable basins and compute thermodynamic properties such as configurational entropy and

free energy differences between states. Several open questions still remain, including how ef-

fectively we can generate physically realistic samples that mimic MD-derived configurations,
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whether the quality of the generative model can be improved using sample covariance and uni-

form alignment instead of model covariance with Kronecker alignment, and whether this method

can be extended to compute the binding free energy difference of small molecules in enzyme ac-

tive sites. We have already begun exploring some of these directions.

Third, we have successfully implemented an iterative approach for optimizing collective vari-

ables, demonstrating that iteration enhances sampling efficiency and accelerates convergence.

While this method has proven effective overall, several key questions remain unanswered. For

instance, its performance in larger systems with numerous degrees of freedom requires further

investigation. Additionally, combining the iterative approach with supplementary coordinates to

better capture large scale conformational changes could further improve sampling. As an exam-

ple, to study a drug binding process, a single LDA coordinate can be biased along with a center

of mass distance between the active site of the protein and drug molecule to facilitate the binding

process and compute binding free energy profiles. Another important aspect is a quantitative

analysis of the increased sampling efficiency of the coordinates, which could involve examining

reference structures and positional covariances that represent the underlying metastable states.

Moreover, our current study primarily focuses on coordinates derived between two states, leaving

room for future exploration of multi-state coordinates and their potential advantages. Moving

forward, we hope to pursue these open directions and develop improved versions of the methods

introduced in this thesis.
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