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Abstract
Mechanical forces in physiological conditions are minuscule but have a significant im-

pact on the behavior of large biological assemblies such as membrane bound proteins,

cytoskeleton complexes, and receptor-ligand complexes that have crucial roles in cell

adhesion and motility. Cells translate these mechanical forces to chemical signals via

several processes, which are collectively known as mechanotransduction. Simulations

show promise for studying these macromolecules at the molecular level. In this work, it

is demonstrated that simulations can indeed be used to probe the mechanisms by which

these macromolecules function under mechanical loads. The effectiveness of the meth-

ods sued are assessed as to confirm that multiple types of force dependence can be

captured using simple protein-ligand models and later this approach is adapted to study

crucial components of the cytoskeleton providing a molecular description of the kinet-

ics of unbinding for known mechanosensitive proteins and findings may inform specific

experiments in future investigations.
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CHAPTER 1

INTRODUCTION
In 1956 Berni J. Alder and Thomas E. Wainwright published the results of the first

Molecular Dynamics (MD) simulations which studied the assembly of hard spheres as

models of gases 1. Later in 1977, McCammon, Gelin, and Karplus reported the first MD

simulation of a protein, the bovine pancreatic trypsin inhibitor, which was run for 9

picoseconds without solvent molecules2,3.

The growth in compute power since then has been immense and currently, with the

implementation of GPU capable MD software for instance, it’s not too difficult to run

MD simulations consisting of fully atomistic models of proteins including solvent molecules

and get trajectories on the order of microseconds. For example, a moderately large atom-

istic model (170,000 atoms) would run at about ∼ 120 ns/day using 1 NVIDIA A100

GPU and 16 CPUs using GPU-capable software like GROMACS4. Furthermore, the

force fields that describe the interactions of atoms have also become more accurate2

making simulations more useful.

The great value that MD simulations offer is the ability to probe molecular properties

that may not be readily accessible or impossible to observe through experiments and

can give insight into how materials or proteins behave at a molecular level. Therefore,

simulations can be used to design experiments testing specific predictions or help gener-

ate new hypotheses driving experiments forward. Consequently, MD simulations have
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now become a staple tool in many fields of study such as materials science, biophysics,

molecular biology among others2,3. One common use is the building and refining of

3D models of proteins obtained by either X-ray crystallography or cryo-electron mi-

croscopy (cryo-EM)5,6. These structures can later be solvated with water and ions in a

physiological concentration and evolved in time to study the equilibrium dynamics of

the protein. Furthermore, modeled ligand binding poses determined by docking or sim-

ilar procedures can be assessed for stability, indicating how viable new drugs might be

in their respective receptors. Conversely, the behavior of a receptor in the absence of a

ligand or with mutated residues can be simulated to determine the effect on its function

by measuring conformational changes or deformations2,3.

Many other functional processes of not just proteins but lipid membranes and nu-

cleotides and other bio-assemblies can be simulated in a similar fashion. In addition,

materials like colloids and metal organic frameworks can also be modeled and simulated

to study collective behaviors such as self-assembly and crystallization. As a result, both

experimentalists and theoreticians have increasingly employed MD simulations in their

research 1,2. However, despite the many achievements and usefulness of MD, it still suf-

fers from a few limitations including the timescale problem7. Many biological processes

occur in timescales in the order of milliseconds to tens of seconds or in some cases in

the order of months. Standard MD simulations are not able to reach these timescales

even with the most powerful of computers as an atomistic model evolves in time steps of

a couple of femtoseconds in most cases 1,7,8. For example, the special purpose supercom-

puter Anton3 can reach speeds of 167μs/day for a 300K atom system9, but this hardware

is not generally available to researchers, and although simulations run 100–1000 times
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faster than what can be achieved on general purpose hardware, for a receptor-ligand

complex with an unbinding rate of approximately 1 s−1 it would take running the sim-

ulation for a decade to observe a single unbinding event 10, and considering the sheer

size of the data that would be generated by the long simulation, this is not feasible nor

reasonable to do.

One approach to help overcome this problem is coarse graining. In this method, the

amino acid molecules that make up a protein, for example, are grouped into smaller sets

of beads thereby reducing the total number of degrees of freedom and reducing the total

number of interactions, allowing simulations to reach longer timescales in shorter com-

putation time 11,12. However, this benefit comes at a cost; by grouping atoms into single

spheres important molecular details may be lost and if these details are important for

the system under study, the model will give less accurate results. Thus, coarse graining

is limited to large biological assemblies where these atomistic details may have minor

roles 10,11.

Yet another approach to the timescale problem is enhanced sampling7. Enhanced

sampling methods encompass a variety of schemes aiming to prevent the simulated sys-

tem from spending all of the simulated time in local minima. For example, adaptive

biasing methods work by carefully introducing biases which help atomistic models over-

come energy barriers separating minima and preventing the models from reaching other

possible states in phase space. Moreover, these methods also discourage sampling of

previously visited points in phase space7. One relevant feature of these methods is that

free energy landscapes can be recovered from the biased simulations7,13,14,15 and in some

cases they can be adapted to recover kinetic information7,16,17. In both scenarios, good
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collective variables (CV) have to be chosen to bias the simulations towards the behav-

iors desired7. Notwithstanding some limitations, these methods are incredibly useful

in studying biological assemblies that have relevant functional behaviors that occur in

long timescales such as protein folding, receptor-ligand unbinding, allostery, enzyme

catalysis, among others 18,19,20,21.

In this thesis, we aim to study the role and effect of mechanical forces on the unbind-

ing of receptor-ligand and multiprotein complexes via enhanced sampling MD simu-

lations. Herein, we provide evidence for the effectiveness of including external forces

in enhanced sampling MD simulations to capture the thermodynamics and kinetics of

increasingly larger receptor-ligand models while they are under mechanical load.

1.1 MOTIVATION

Observing a mammal, a dog as it goes for a walk for instance, biological mechanical

forces can be seen in action evidenced, for example, by the muscle stretching required

to lift its legs, its heart pumping oxygenated blood to the rest of its body, the expansion

of its chest cavity as it breathes. Zooming in to a microscopic level, we’d discover tis-

sues and cells consisting of aqueous organic matter surrounded by fluids which are in

constant flow along and in between the surfaces and junctions of cells22. These flow-

ing actions generate shear stress; for example, as blood flows through vessels it exerts

tension on the endothelial cells of veins and arteries, or as the urinary bladder is emp-

tied, the cells in the renal tubule experience a dragging force as waste is expelled23,24,25.

Getting even closer towards adherens junctions, where adjacent cells interact with and
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attach to one another via receptor-ligand interactions, and beyond the cell membrane

towards focal adhesions that connect the cytoskeleton of cells to the extracellular ma-

trix, we would observe a complex machinery consisting of large scaffolds consisting of

proteins that are able to respond to these outside forces by transducing them into signals

that cascade into pathways that are critical to a cell’s function24,25. Conversely, inside

the cell, we would discover that forces are also generated by internal processes and struc-

tures. For example, the action of protein motors like kinesin which carries a vesicle as

cargo along a microtubule cytoskeleton, polymerization and depolymerization of mi-

crotubules and filaments that push and pull on other structures generating movement

and force dependent behaviors24,25,26. Evidently, mechanical forces at the cellular level

are widespread and they play an important role in a long range of biological processes.

They can be seen in action in major phenomena; namely, adhesion, transport of mate-

rials, motility, division, growth, differentiation, morphogenesis, and tissue homeostasis

among others23,24,25,27,28,29. Cells therefore, have mechanosensing and mechanotrans-

duction mechanisms which, among other processes and macromolecules, are mediated

by receptor-ligand complexes and multiprotein scaffolding found at the interface of the

ECM-cell membrane-cytoskeleton assembly which become activated in the presence of

mechanical loads 10,24,29,30.

What is surprising is that the magnitudes of physiological forces are minute; they

range from a few piconewtons (pN) to tens of pN31 (in the case of filaments hundreds

of pNs may be felt from the collective action of motors32) yet, they are able to influ-

ence the behavior of entire scaffolds. More specifically, the role of mechanical forces

is thought to be fundamental for cell migration which is required for embryonic devel-
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opment, wound healing, and cancer metastasis33,34. As filaments are polymerized, the

cell is pushed forward in a persistent direction. Later, the cell is anchored to the extra-

cellular matrix via focal adhesions, which need to transiently resist dragging forces as

the rear of the cell moves forward24,34. These functions are regulated by several differ-

ent proteins via several mechanisms which are not fully understood33,34. The molecular

details of these mechanisms, however, are challenging to obtain and existing models

inferred from experiments need to be evaluated to be confirmed and/or improved, or to

offer alternative explanations.

1.2 EFFECT OF FORCES ON THERMODYNAMICS AND KINET-

ICS OF UNBINDING

Typically, receptor-ligand complexes form after the binding of a small molecule to a

specific region of the receptor protein, which may inhibit or activate its function via a

conformational change or allostery. Understanding this process is crucial in drug devel-

opment, for instance. Experimentally, to probe the efficacy of new drugs, researchers

measure binding affinities via thermodynamics constants such as the dissociation con-

stant, Kd
19,35. In experiments, Kd is related to the free energy of binding, ΔGb, as in:
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Figure 1.1: Protein‐ligand model. Ligand is represented by a sphere and it unbinds from its bind‐
ing site (state 1) with rate koff to reach the unbound state (state 0).

ΔGb = RTln(Kd)

ΔGb = −RTln(Ka)

Ka =
1
Kd

Kd = e
ΔGb
RT

(1.1)

where R is the ideal gas constant, T is the temperature in units of Kelvin, and Ka is

the association constant 19,35. However, it’s been increasingly noted that the lifetime of

the complex formed after binding may be a better measure of the effectiveness of the

ligand as the duration of the biochemical effect caused by the complex is proportional

to the residence time of the ligand35,36,37. The lifetime of the receptor-ligand complex, τ,

is defined as the reciprocal of the unbinding rate koff. Additionally, the binding affinity

under equilibrium conditions can be defined as the ratio of the unbinding rate to binding
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rate 19,35.

Kd =
koff

kon

koff =
1
τ

(1.2)

The computation of kon is far from trivial via experiments or simulation36. On the

other hand, koff, can be obtained via enhanced sampling methods38,39,40,41,42 and can be

further improved with post-processing methods43,44. Then, molecular insight can be

extracted from the generated trajectories.

In the context of mechanotransduction where binary complexes are found in envi-

ronments where they are exposed to shear stress or strain, the principles above can be

extended to include the effect of forces. For example, in cell adhesion where adjacent

cells interact via receptors and ligands, the “bond” between them is constantly subjected

to pulling forces and may break as the magnitude of the forces increases45. If we assume

that a bound and unbound state is described well by a one-dimensional potential, U(Q),

with two minima separated by an energy barrier along an ideal unbinding coordinate,

Q, the effect of the force is to tilt the potential in the direction of the force (see Fig. 1.2):

U(Q, F) = U(Q)− FQ (1.3)

where F is the force acting on Q. In this scenario the equilibrium constant, Keq, defined

as the ratio of unbound probability to bound probability46,47, shifts towards the unbound

state; this can be shown as derived in Ref. 30.

8



koff

kon

state 1 state 0

Figure 1.2: Effect of mechanical force on a simple potential. The force applied in the direction of
Q lowers the energy barrier to unbinding.

Starting with:

Keq =
P0
P1

(1.4)

where P1 is the probability of being in the bound state, and P0 is the probability of being in

the unbound state. In this simple one-dimensional potential, P1 and P0 can be expressed

as:

P1 =
∫

dQδ(Q− Q1)e−βU(Q)

= e−βU(Q1)

P0 =
∫

dQδ(Q− Q0)e−βU(Q)

= e−βU(Q0)

(1.5)

whereQ1 is the exact location of the bound state (first minimum), Q0 is the exact location

of the unbound state (second minimum), β = 1/(kBT), kB is Boltzmann’s constant, and
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T is the temperature. Then Keq takes the form:

Keq =
e−βU(Q0)

e−βU(Q1)
= e−β(U(Q0)−U(Q1)) (1.6)

when force is applied, we obtain Keq(F) as in:

Keq(F) = e−β(U(Q0)−FQ0−U(Q1)+FQ1)

= e−β(U(Q0)−U(Q1))e βF(Q0−Q1)

= K0
eqe

βF(Q0−Q1)

(1.7)

where K0
eq is the constant in the absence of force. Therefore, the force dependence of

the equilibrium constant is exponential and the energy from the force is proportional to

the distance between the unbound and bound state30.

Using the same potential, U(Q), we can determine how the lifetime of the bound state

is affected by applied forces. Assuming that the kinetics follow the Arrhenius equation,

in the absence of forces, the unbinding rate is exponentially dependent on the height of

the energy barrier:

k0off = Ae−βΔE (1.8)

where ΔE is the energy barrier, and A is some scaling factor such as the attempt fre-

quency. The effect of the applied force depends on the magnitude of the force and the

distance from the location of the energy barrier, Q‡, to the bound state, Q1; namely ΔQ:

ΔE = U(Q‡)− U(Q1)

ΔQ = Q‡ − Q1

(1.9)
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Assuming that the applied force does not shift the location of the energy barrier, we

obtain koff(F) as:

koff(F) = Ae−β(ΔE−FΔQ)

= k0offe
βFΔQ

(1.10)

Therefore the unbinding rate is scaled exponentially by the force45,48. This relation-

ship was first proposed by G.I Bell45 and further expanded by Evans and Dembo48,49; it

became known as “Bell’s law” (sometimes “Bell-Evans”).

Under the assumptions stated earlier, a ligand is expected to slip out of its receptor’s

binding pocket increasingly faster with increasing force. Such force-inhibited interac-

tions are called slip bonds23,27,49. However, these assumptions stop being true as larger

or more dynamic systems are studied. In many cases, the interactions between receptor-

ligand or multiprotein complexes were found to be enhanced by force33,50,51,52,53, where

the unbinding rate would decrease as the force increased. These counterintuitive bond

strengthening interactions are called catch bonds23,49. Several conceptual models have

been reported to explain catch bonding29 but in general, the equilibrium constant is

shifted to the bound state in response to force54 and the energy barrier to the unbound

state increases in the presence of force.

11



1.3 SLIP BONDS

Slip bonds describe the simplest dependence of an unbinding rate on force. More gen-

erally, we can write:

k10(F) = k010e
βFx10 (1.11)

where k010 is the transition rate (koff) from the bound state (1) to the unbound state (0)

in the absence of force, F is the magnitude of the pulling force, and x10 represents the

transition distance (how far the energy barrier between states 1 and 0 is from the bound

state 1) in the selected coordinate along which the force is being exerted. Note that k010

and x10 can be obtained from fitting measurements of k10 to Eq. 1.11.

The force dependent probability density function (CDF) of the measured lifetimes

corresponds to:

f(F, t) = k10e−k10 t (1.12)

Then, the cumulative distribution function (CDF) is equivalent to:

C(F, t) = 1− e−k10 t (1.13)

and the survival function is described as:

B(F, t) = e−k10 t (1.14)

This model works well in certain cases such as the case of certain bacteria that are able

to bind to their surface when the shear stress exerted on them is low but are washed
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off when shear stress is increased27. More relevantly, the lifetimes of the P-selectin-G1

complex under force are well described by “Bell’s law”55. However, as stated earlier,

this relationship does not work well for force-enhanced interactions. Although, beyond

a force range, complexes may transition to slip bond behavior55. Moreover, the un-

binding of some known mechanosensitive proteins can be explained by force dependent

transitions between two different bound states and transitions to the unbound state; each

transition can be modeled by modified “Bell” equations. Thus,“Bell’s law” is still useful

in some types of catch-bonds.

1.4 CATCH BONDS

In MD simulations, we must consider how a force changes the free energy surface (FES)

for the unbinding reaction, which takes into account a Boltzmann weighted average over

all possible configurations of the system. The FES A(ξ̃) along a reaction coordinate

ξ(X⃗) (e.g. number of contacts between a ligand and a protein) is computed by taking

a Boltzmann weighted average over all possible configurations. If a pulling force F is

applied along the coordinate Q (e.g. distance of the ligand to the center of its binding

pocket), the FES as a function of force, A(ξ̃, F) can be expressed as

e−βA(̃ξ,F) =

∫
dX⃗δ(ξ(X⃗)− ξ̃)e−βU(X⃗)+βFQ(X⃗). (1.15)

where U is the potential energy function for the system, and X⃗ represents the configura-

tion of the system in all 3N Cartesian dimensions. The effect of the force on the FES can

be complex, because many configurations may map to a single value of ξ̃, while these
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Figure 1.3: Simple force dependent models. (A) In the slip bond scenario, forces decrease the
energy barrier to unbinding while in the catch bond case (B) a second pathway to unbinding has a
higher energy barrier to unbinding when forces are applied.

can each differ in their value of the pulling coordinate Q. This may cause the surface to

change in unexpected ways such as increasing the energy barrier to unbinding resulting

in catch bonding behavior30.

Catch bonds are characteristic for increasing their lifetimes as forces increase, but

they only do so up to a limit beyond which slip bond behavior may be recovered. Well

studied examples include the P-selectin-PSGL-1 complex55,56 and the FimH-mannose

complex50,56. A simple model for catch-bonding consists of a single bound (1) and un-

bound state (0) but there are two different pathways (see Fig. 1.4) to reach the unbound

state56. The unbinding rate in this scenario can be modeled as:

k10(F) = k0s e
βFxs10 + k0ce

βF(−xc10) (1.16)
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Figure 1.4: Single bound state catch bond. Also referred to as the two‐pathway model29, the
slip path is opposed by the catch path, which may be favored when forces are applied due to a
configuration change on the ligand or on the receptor.

k0s and k0c refer to the rates in absence of force for the slip and catch pathways, and the

parameters xs10 and xc10 are the distances from state 1 to the corresponding barrier in each

pathway. Notice that, xc10 < 0 which is necessary to observe the slowing of rates when

higher forces are exerted along a particular coordinate. Moreover, in this case, four

parameters are needed to optimally fit k10 measurements (this model is used in Chapter

3). In this model, the PDF, CDF, and survival functions are also described by single

exponential functions as in Eqs. 1.12, 1.14, 1.13.

Another much more complex kinetic model is the two bound state catch bond model

(three-state, see Fig. 1.5). In this scenario, a second bound state is introduced (2), and

the two bound states can transition from one to the other. But the unbinding rate is lower
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for one state (strong) than the other (weak). The force dependence of each transition rate

can be modeled as:

kij(F) = k0ije
βFxij (1.17)

where ij denotes transition from state i to state j. In this case, a total of eight parameters

need to be optimized to fit measurements of the overall lifetime of the complex or rate

(koff). Moreover, the PDF, CDF, and survival functions are better described by double

exponential functions taking into account the two bound states. The PDF is given by:

f(F, t) = C1λ1e−λ1t + C2λ2e−λ2t (1.18)

The CDF is given by:

C(F, t) = 1− B(F, t) (1.19)

Lastly, the survival function is given by:

B(F, t) = C1e−λ1t + C2e−λ2t (1.20)

In the equations above, Ci, λi are functions of kij which in turn are functions of force
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F, k0ij and xij. These parameters were derived in Refs. 23,57 as follows:

C1 =
k21(F) + k12(F) + B0

1k20(F) + B0
2k10(F)− λ1

λ2 − λ1

C2 = 1− C1

B0
1 =

k021k
0
10

k021k010 + k012k020

B0
2 = 1− B0

1

λ1,2 =
b±

√
b2 − 4c
2

b = k21(F) + k20(F) + k12(F) + k10(F)

c = k21(F)k20(F) + k10(F)k20(F) + k12(F)k20(F)

(1.21)

The k0ij and xij parameters for each transition can be obtained from a maximum likelihood

estimation given the measured lifetimes at several forces. Then, the expected mean

lifetime at a given force τ(F) can be obtained as shown below:

⟨τ(F)⟩ =
∫ ∞

0
−dB(F, t)

dt
t dt

=
C1

λ1
+

C2

λ2

(1.22)

where ⟨τoff(F)⟩ is the mean lifetime of the bond (koff(F) = 1/⟨τ⟩) and B(F, t) is the bond

survival function.

17



Figure 1.5: Two bound state catch bond. Two distinct bound states are possible with different
unbinding lifetimes. In this schematic, the strong state is slower to unbind due to a tighter fit of
the ligand to the binding pocket of the receptor.
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1.5 OVERVIEW OF THESIS

In the following chapters, we give a brief description of how mechanical forces are

included in simulations and summarize all the computational methods used to obtain FE

surfaces and subsequently kinetic rates. In Chapter 3, we assess the force dependence of

unbinding for simple models of receptor-ligand complexes and test whether enhanced

sampling methods can be used in combination with external forces to compute kinetic

rates under load. We note scenarios when these methods start breaking down. Then, in

Chapter 4, using lessons learned previously, we adapt and improve our approach from

Chapter 3 to probe the catch-bonding behavior of the actin-vinculin complex. Using

a large number of simulations, we are able to capture this counterintuitive behavior in

physiological conditions and make measurements in experimentally relevant timescales.
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CHAPTER 2

COMPUTATIONAL METHODS
2.1 MOLECULAR DYNAMICS

Molecular dynamics (MD) simulations serve as a computational microscope that allows

an observer to study molecular models at an atomistic scale 1,8,58. MD methodology rests

on the fact that the motions and structures of large enough molecules can be approxi-

mated with fairly good accuracy with classical mechanics 1,8. Given that the size of a

fairly detailed atomistic model of a biological macromolecule in physiological condi-

tions ranges from 105 to 106 atoms and that relevant dynamics can begin to be observed

in the nanosecond to microsecond scale, simulations need to efficiently perform many

millions of calculations as trajectories are predicted. This can be achieved by combining

molecular dynamics simulations and the increasing power of computers, which allow for

numerical methods to be easily implemented and applied to systems with increasingly

high degrees of freedom 1,58.

Statistical mechanics allows us to formulate an ensemble average as:

⟨O⟩ =
∫
O(X⃗, p⃗)e−βH(X⃗,⃗p) dX⃗d⃗p∫

e−βH(X⃗,⃗p) dX⃗d⃗p
(2.1)
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where H(x) is the Hamiltonian (total energy) of the system.

H(X⃗, p⃗) =
N∑
i=1

p⃗2i
2mi

+ Uforcefield(X⃗) (2.2)

In MD, however, we make measurements via time averaging and invoke the ergodic

hypothesis, which states that a time average of a sufficiently long and well sampled

trajectory should produce the same result as the ensemble average 1,8,58. Newton’s second

law of motion serves as a foundation on which MD methods are built to accurately

describe the dynamics of increasingly complex molecules.

To evolve an atomistic model in time, equations of motions are needed and are usually

derived as follows:

Each atom i in a model composed by N atoms have a mass and an acceleration pro-

portional to a force acting on it.

Fi = mi⃗a (2.3)

The force can also be written in terms of momentum.

Fi = mi
d⃗vi
dti

=
d⃗pi
dt

(2.4)

Moreover, the force can also be written in terms of the potential energy, Uforcefield, which

describes all the intra and intermolecular interactions as a function of positions, X⃗.

Uforcefield(X⃗) = Vbonded + Vnonbonded (2.5)

whereVbonded includes all bonded interactions including bond, angle, and dihedral terms,
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and Vnonbonded includes non-bonded interactions such as van der Waals and electrostatic

interactions.

Usually these potentials59 have the form:

Vbonded =
∑
bonds

kb(r− r0)2 +
∑
angles

kθ(θ− θ0)2 +
∑

dihedrals

kφ[1+ cos(nφ − δ)], (2.6)

and

Vnonbonded =
∑
i<j

[
4ϵij
(
σ12ij
r12ij

−
σ6ij
r6ij

)
+

qiqj
4πϵ0rij

]
, (2.7)

Then the force becomes:

Fi = −dU
dxi

dpi
dt

= −dU
dxi

(2.8)

We can differentiate the kinetic energy K =
p⃗2i
2mi

with respect to momentum:

dKi

dpi
=

pi
mi

=
mi vi
mi

= vi

vi =
dxi
dt

(2.9)

then we end up with:

dpi
dt

= −dU
dxi

dxi
dt

=
dKi

dpi

(2.10)

These are the Hamilton equations of motion and describe the time evolution of coordi-
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nates x and momenta p for every atom in the system. Since these have no exact solution,

they are solved numerically by methods such as the velocity-verlet or leap-frog algo-

rithms 1,58.

To sample relevant distributions (NVT, NPT) thermostats and barostats need to be

added to the Hamiltonian and equations of motions are adjusted accordingly58.

2.2 HOW TO INCLUDE PICO-NEWTON SCALE MECHANICAL

FORCES IN MD SIMULATIONS

Mechanical forces can be introduced in simulations by modifying the simulated system’s

Hamiltonian:

H(X⃗, p⃗) =
N∑
i=1

p⃗2i
2mi

+ Uforcefield(X⃗) + Umechanical(X⃗), (2.11)

where X⃗ denotes the positions of all atoms in the system, p⃗ is their momenta, and

Umechanical(X⃗) is the mechanical work done onto the system. In simulations where the

aim is to mimic single molecule experiments, such as, atomic force microscopy (AFM)

or optical trap (OT) assays60 mechanical pulling forces can be modeled via a harmonic

restraint on a chosen pulling coordinate or collective variable (CV) as in:

Umechanical(X⃗) =
1
2ktrap(Q(X⃗)− Q0)

2 (2.12)

where Q(X⃗) is the CV onto which force is exerted. In steered MD simulations, Q0 is

shifted linearly in time to mimic constant velocity experiments61,62.
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On the other hand, if we treat the cumulative effect of numerous processes exerting

forces on a mechanosensitive molecule as a time averaged constant force we can inves-

tigate the study of such force with a linear restraint30:

Umechanical = −FmechanicalQ(X⃗) (2.13)

where the mechanical force, −Fmechanical, is exerted on Q(X⃗). The pulling CV Q(X⃗) can

be a function of positions of groups of atoms that describe a coordinate that separates

the bound components. For example, the distance between the center of mass (COM)

of the binding pocket of a protein and the COM of its ligand47.

At a typical temperature of ∼300K, the energy value of kBT is ∼ 2.5 kJ/mol or ∼ 0.60

kcal/mol30,63, and this energy in units of force times distance is approximately 4.1pN nm.

This is used to convert pN forces to kJ
mol nm or kcal

mol Å .

2.3 METADYNAMICS

Metadynamics (MetaD) is an enhanced sampling method which allows the construc-

tion of a low dimensional free energy surface (FES) as a function of carefully chosen

collective variables (CVs) 13,64. An external history dependent bias that is a function of

the CVs is added to the Hamiltonian of the system, pushing the system away from ar-

eas already explored64. As a result, a much wider exploration of configuration space is

achieved in the same amount of MD steps. The external potential consists of a sum of
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Gaussians that are deposited along the trajectory of the CVs.

V(Q⃗, t) = ω
t∑

t′=τG,2τG...

e
−

∑d
i=1

(Qi (⃗X(t))−Qi (⃗X(t
′)))2

2σ2i (2.14)

where ω is the Gaussian height, τG is the time interval at which Gaussians are deposited,

Qi are functions that map the atomic coordinates X⃗(t) onto CV i, and σi are chosen

Gaussian widths for each CV.

After a sufficiently long time, the external potential provides an estimate of the free

energy as :

V(Q⃗, t → ∞) = −F(Q⃗) + C (2.15)

where F(S) is the free energy and C is an irrelevant constant 13,64.

Since the bias does not converge to −F(Q⃗) + C, but rather fluctuates about it, there

is a risk of overfilling the underlying FES and pushing the system to less likely, higher

energy regions in the CV space. To address this, Well-Tempered Metadynamics (WT-

MetaD)64,65 modifies the Gaussian hill heights so that they decrease exponentially as a

function of the cumulative bias applied at the current CV position,

ω′(t) = ωe−
V(Q⃗,t)
kBΔT (2.16)

where ΔT is the tempering factor.

In the long time limit, the deposition rate approaches 0 and the external potential

converges to:

V(Q⃗, t → ∞) = − ΔT
T+ ΔTF(Q⃗) + C (2.17)
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where C is an irrelevant constant. Furthermore, the probability distribution of the CVs

takes the form:

P(Q⃗) ∝ e−
F(Q⃗)

kB(T+ΔT) (2.18)

Thus, as ΔT → 0, ordinary MD is recovered and as ΔT → ∞, standard Metadynamics

is recovered. Effectively, the CV space is sampled at temperature T+ΔT and WT-Meta

dynamics increases the probability of crossing energy barriers and limits the extent of

FES exploration by choosing an appropriate ΔT. As a result, the risk of overfilling the

underlying FES is avoided66.

MetaD and many subsequent variations became popular for computing FESs due to its

ease of use, and the fact that they promote exploration. As with any CV-based enhanced

sampling method, the primary difficulty is choosing appropriate CVs that encompass

all relevant slow transitions for the system of interest64.

2.4 INFREQUENT METADYNAMICS

Although MetaD was designed to predict static properties of a system such as the FES,

in some situations it can be adapted to produce an estimate of the rate of slow dynami-

cal events38. Voter demonstrated that unbiased rates of infrequent barrier crossing pro-

cesses can be computed very rapidly by applying a bias outside of transition regions to

“boost” the system over those barriers67,68. Tiwary and Parrinello proposed the idea of

infrequent metadynamics (InfrMetaD), where the metadynamics framework described

above is used to produce this boost potential on the fly38.

To extract unbiased rates however, three key criteria must be met: (1) the transitions
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from one state to the other are assumed to be rare events, but the actual crossing of the

transition state is ephemeral, (2) the biased CV is a good reaction coordinate for the tran-

sition, and (3) additional Gaussians should be added to the bias potential infrequently

enough that none are added during the barrier crossing38.

When this is the case, transition state theory says that the ratio of the escape times

in the biased and unbiased cases is given by the ratio of the partition functions in the

reactant basin. This ratio gives an acceleration factor α which can be computed as

α = ⟨eβV(Q⃗,t)⟩ (2.19)

where Q⃗ are the collective variables being infrequently biased and V(Q⃗, t) is the meta-

dynamics bias experienced at time t38.

To compute an unbinding rates using InfrMetaD, many independent biased simula-

tions (enough to get good statistics) are run until the unbound state is reached and the

simulation is stopped. The unbiased reaction times for each simulation instance are

estimated by multiplying the final time in the simulation by the acceleration factor com-

puted up to that point. If unbinding is a rare event with a single dominant barrier, we

expect the distribution of transition times to be exponential as for a homogeneous Pois-

son processes, and to depend on a single bond lifetime τ69,70. In this case, to obtain

the unbinding rate, a cumulative distribution function from the scaled transition times

(ECDF) can be built and fit to the cumulative distribution function of the exponential

distribution (TCDF),

CDF(t) = 1− e−tscl/τ. (2.20)
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where tiscl = αi ti, denotes the scaled unbinding lifetimes and τ is is the mean unbinding

lifetime. The rate of the process can then be computed as k = 1/τ. The correspondence

of the ECDF to the TCDF can be checked by the Kolmogorov-Smirnov (KS) test70.

Later, the standard error in the rates can be obtained via bootstrapping.

2.5 ON THE FLY PROBABILITY ENHANCED SAMPLING META-

DYNAMICS

The on-the-fly probability enhanced sampling metadynamics (OPES-MetaD) method 15

is similar to metadynamics64, however OPES-MetaD computes the bias from the ratio of

a target probability distribution to the reweighted probability distribution of the chosen

CVs, making the bias nearly constant as the system FES is refined (as compared to

standard MetaD which continually adds Gaussian functions to the applied bias). The

reweighted probability distribution is obtained via kernel density estimation and the

bias applied on CVs Q⃗ has the form:

Vn(Q⃗) = (1− γ−1)
1
β
log
(
P̃n(Q⃗)
Zn

+ ε

)
(2.21)

where γ is the bias factor, P̃n(Q⃗) is the estimated probability distribution of the chosen

CVs, Zn is a normalization factor, and ε is a regularization factor that prevents taking
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the log of 0. These values are defined as shown below:

P̃n(Q⃗) =
∑n

k ωkG(Q⃗, Q⃗k)∑n
k ωk

ωk = eβVk−1(Q⃗k)

ε = eβΔE/(1−
1
γ )

γ = βΔE

(2.22)

One particular parameter that provides an advantage over standard MetaD is the ΔE

barrier parameter, which is used to set the bias factor γ (which determines how much

FES barriers are reduced) and ε in Eq. 2.21. This barrier parameter in practice is chosen

to be roughly equal to the energy barrier to be overcome during simulation. In essence,

we can limit the sampling of higher energy regions that may not be realistically acces-

sible.

2.6 OPES FLOODING

OPES-MetaD, much like InfrMetad, can be adapted to compute unbinding rates. The

same assumptions can be made about the collected lifetimes corresponding to a rare

event. The difference lies in that it’s critical to know where the transition state is in CV

space and how high is the energy barrier separating the bound and unbound states. This

information ideally should be obtained from fully converged FESs, but approximate FES

calculations can be good enough to start rate calculations, which can be improved as the

parameters are adjusted. The improvement over InfrMetad is that an excluded region
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which would include the transition state can be defined and by making the bias go to

zero when the excluded region is reached there is no risk of biasing the transition state,

which can potentially give more accurate unbinding lifetimes.

The methods described above can all be included in MD simulations via the PLUMED

library71.
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CHAPTER 3

COMPUTING UNBINDING RATES USING IN-
FREQUENT METADYNAMICS
This chapter was adapted from Ref. 72

3.1 ABSTRACT

Protein-ligand interactions are crucial for a wide range of physiological processes. Many

cellular functions result in these non-covalent ‘bonds’ being mechanically strained, and

this can be integral to proper cellular function. Broadly, two classes of force depen-

dence have been observed—slip bonds, where unbinding rate increases, and catch bonds

where unbinding rate decreases. Despite much theoretical work, we cannot predict for

which protein-ligand pairs, pulling coordinates, and forces a particular rate dependence

will appear. Here, we assess the ability of MD simulations combined with enhanced

sampling techniques to probe the force dependence of unbinding rates. We show that

the infrequent metadynamics technique correctly produces both catch and slip bonding

kinetics for model potentials. We then apply it to the well-studied case of a bucky-

ball in a hydrophobic cavity, which appears to exhibit an ideal slip bond. Finally, we

compute the force-dependent unbinding rate of biotin-streptavidin. Here, the complex

nature of the unbinding process causes the infrequent metadynamics method to begin to

break down due to the presence of unbinding intermediates, despite use of a previously
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optimized sampling coordinate. Allowing for this limitation, a combination of kinetic

and free energy computations predict an overall slip bond for larger forces consistent

with prior experimental results, although there are substantial deviations at small forces

that require further investigation. This work demonstrates the promise of predicting

force-dependent unbinding rates using enhanced sampling MD techniques, while also

revealing the methodological barriers that must be overcome to tackle more complex

targets in the future.

3.2 INTRODUCTION

Mechanical forces play an important role in a wide range of biological

processes28,30,45,73,74,75,76,77,78,79,80,81. Cells have evolved mechanosensing mechanisms by

which the behavior of a protein or protein complex changes in a stereotypical way in

response to that applied force. In general, these forces produce two types of results:

they can have a thermodynamic effect on the conformational landscape of the protein(s)

or a kinetic effect, changing reaction rates30,82. In this chapter, we will focus on the

kinetic effects of force on protein-ligand unbinding27,45,77. Although much work has

been done experimentally and theoretically to understand the role of mechanosensitive

unbinding rates in biological processes27,28,33,55,62,77,83,84,85,86,87, much less is known about

the molecular details that contribute to the force dependence of the rate. Here, we wish to

assess whether molecular dynamics (MD) simulations coupled with enhanced sampling

techniques are suitable for this task.

Protein-ligand interactions are essential in mediating cellular adhesion and cell-cell

32



interactions. These non-covalent “bonds” are put under tension due to the action of

molecular motors in the cellular cytoskeleton and/or mediated by tension in the cel-

lular membrane45,74,88,89. Crucially, at short time scales we can think of these forces

as quasi-static, with forces typically in the piconewton scale for each bond. Although

MD has been used to probe the effect of force on proteins or even protein-ligand in-

teractions90,91,92,93,94,95, to the best of our knowledge, it has not been used to predict

equilibrium unbinding kinetics under these quasistatic, small force conditions. As dis-

cussed earlier, this scenario presents a particular challenge because these small forces

are unlikely to substantially shift the behavior of the system outside the linear response

regime. Consequently, sampling has to be very accurate to capture the subtle structural

changes leading to large changes in rate30. Due to the challenges of probing these sys-

tems at a fully molecular level, theoretical work and coarse-grained studies in this area

have generally concentrated on (free) energy surfaces that represent the unbound state

and potentially various bound states of the system77,84,86,96.

As stated earlier, the biggest challenge to predicting bond lifetimes is that the relevant

time scales for dissociation may be on the order of milliseconds to tens of seconds for

systems that we are interested in, meaning that we would not expect to see any unbind-

ing events within a standard MD simulation30. We were inspired by a large amount of

recent literature on the development of enhanced sampling MD techniques designed to

predict the unbinding time of drug molecules from their protein targets42,97,98,99,100,101.

These techniques accelerate the unbinding of the ligand by many orders of magnitude

in such a way that many unbinding events can be observed within the limitations of

standard computational resources, and allow for statistical reweighting of the observed
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unbinding times to predict their unbiased values. Approaches to accelerate generation

of rare unbinding events can be broadly broken into two categories, (1) those that sim-

ulate many copies of the system and select only trajectories that advance along some

progress variable, and (2) those that push the ligand out of its binding pose by applying

an energy bias in the bound state.

Here we report our results from using Infrequent Metadynamics (InfrMetaD), a method

that computes unbinding times from reweighted trajectories using an energy bias (see

Sec. 2 for full details) 16,38. We choose to evaluate this method first because it very quickly

produces unbinding trajectories, has a metric for determining whether computed un-

binding times are reliable70, and because we can compute free energy surfaces using

standard metadynamics (MetaD) to compare the computed changes in low dimensional

free energy surface with applied force to the predicted change in unbinding rate.

A constant pulling force F on coordinate Q(X⃗) changes the energy of our system

to U(X⃗) − FQ(X⃗), where Q is a collective variable (CV) that is a simple function of

our molecular configuration X, such as the distance between two atoms on which we

are pulling, and U(X) is the potential energy of the system without an applied pulling

force30. This has the effect of “tilting” the probability distribution of observed config-

urations such that the probability of seeing some configuration at force F is given by

PF(X⃗) = P0(X⃗)eβFQ(X⃗) 30, where β = 1/(kBT), kB is Boltzmann’s constant, and T is the

temperature; kBT ≈ 4.1pN nm at room temperature30. Because this is a static change to

our probability distribution, standard equilibrium simulation techniques can be applied.

For a simple one dimensional energy surface such as that shown in Fig. 3.1 (a), the

rate of transition from bound to unbound follows the Arrhenius law, and depends on the
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exponential of the height of the energy barrier between the two states. Under certain as-

sumptions, this implies that the dependence of an unbinding rate on force should follow

koff(F) = koff(0)eβFΔQ
‡
, (3.1)

where ΔQ‡ is the distance from the bound to transition state in coordinate Q, and is taken

to be constant. This equation was used in a theory of cellular adhesion by G.I. Bell, and

hence is referred to as Bell’s law in the biophysics literature45. Bell’s law is an example

of a slip bond dependence, where unbinding becomes faster with applied pulling force

as we might expect.

It is immediately obvious that the assumptions going into Bell’s law need not hold for

real protein systems, and hence we should not expect Bell’s law to apply. Because of

this, several extended theories have been developed to correct the simplest assumptions

going in to Bell’s law, in particular that the distance to the transition state does not

change with force77,85,102,103. From a broader perspective, the reason Bell’s law would not

hold is that the unbinding rate should depend not on the energy surface, but on the free

energy surface, which at constant volume and temperature would be given by A(Q) =

−kBT log(
∫
dX⃗δ(Q(X⃗) − Q)PF(X⃗)). Because many different molecular configurations

can contribute to distances in Q intermediate between bound and unbound, the free

energy surface could change in unpredictable ways as force varies, and the surface may

no longer be represented as a simple double well30.

One particularly interesting class of protein-ligand bonds that we wish to study are so-

called catch bonds, where the lifetime of the protein-ligand interaction actually increases

with pulling force27,28,55,86. Physiologically, catch bonds may play many important roles,
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Figure 3.1: Simple potentials. (a) A two well potential energy surface is used a model system for
a simple binding/unbinding reaction. (b) A three well potential energy surface, constructed by
adding a metastable state to a two well potential from Ref.77 is designed to exhibit catch bond
behavior in escaping from the lower left to the upper right when pulling in the x direction. Details
of the potentials are in Sec. 3.5.2.1.

including giving cells a tool by which they can adhere strongly in the presence of strong

external forces. One example is the FimH-mannose bond, which allows bacteria to

adhere to the urinary tract in the presence of large shear forces; here the effect of shear

force is to separate two domains in the protein, which allosterically causes a dramatic

increase in ligand binding affinity27,51,75. A number of general theories have been put

forth to explain catch bond behavior27,55,56,84, including one type of catch bond where

an applied force on the system shifts the stable equilibrium state into one where there

is a higher barrier to ligand unbinding, as described for FimH (Fig. 3.1 (b)). Catch

bond kinetics have not been observed directly in atomistic molecular simulation for

equilibrium applied forces to date.

An overarching question which we wish to answer in our research is, how complex

does a molecular system need to be to have behavior that cannot be described by Bell’s
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law? Our goal here is to check whether InfrMetaD is a sufficiently powerful method to

capture expected force dependent behavior for model systems where we know what the

expected result should be, and then apply it to more complex molecular systems to gain

insight into the molecular dissociation mechanisms that do and do not result in Bell’s

law behavior.

In the following sections the results and discussion are described as follows; in Sec. 3.3.1,

we apply these the MetaD and InfrMetaD methods to model potentials in Fig. 3.1 and

confirm that InfrMetaD can capture Bell’s law and catch bond behavior; in Sec. 3.3.2,

we then apply it to a model of a protein-receptor system, a hydrophobic ball in a hy-

drophobic cavity surrounded by water, and show that this exhibits Bell’s law behavior,

despite having a non-trivial unbinding pathway. In both cases, we evaluate the free en-

ergy surfaces to check whether their changes with force are consistent with observed

differences in rates; finally, in Sec. 3.3.3 we apply these methods to a larger atomistic

protein-ligand system, streptavidin-biotin. While InfrMetaD begins to break down in

this case, a combination of InfrMetaD and well-tempered MetaD suggest a number of

unbinding intermediates that give rise to a breakdown in simple Bell’s behavior, despite

being a slip bond overall. We discuss the ramifications of these results and the outlook

for future studies in Sec. 3.4. Finally, we give full details of the simulations performed

above in Sec. 3.5.
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3.3 RESULTS AND DISCUSSION

3.3.1 Model potentials

We first wish to confirm that InfrMetaD is an appropriate tool to predict the force depen-

dence of unbinding rates. To do this, we apply InfrMetaD to one- and two-dimensional

potentials meant to exhibit slip and catch bond behavior, respectively. As described in

Sec. 3.2, a two well potential such as that in Fig. 3.1 (a) is predicted to show Bell’s law

dependence of unbinding rate with force.

To compute the unbinding rates, a total of 20 InfrMetaD runs were performed for

forces in the range F = 0 to 3.32 pN. Both the pulling force and bias were applied to

the x coordinate (see Sec. 3.5.2.1, with representative CDFs in Fig. 3.10). Moreover,

we explicitly compute the free energy using WTMetaD to see how the change in the

underlying FES corresponds to the change in rate. Here, we do this to be consistent

with forthcoming examples and to verify our numerical approaches, although it is not

necessary for a one-dimensional case.

As expected, the rates computed by this approach increase exponentially with applied

force, and fit very well to Bell’s law (Fig. 3.2a). How does this connect to the underlying

(free) energy surface? Fig. 3.2b shows that these rates conform to the Arrhenius law,

where the rates are exponentially dependent on the barrier height between the states.

Among other assumptions, Bell’s law should hold when the barrier decreases linearly

with force and the distance to the transition state is constant30. Fig. 3.2c-d shows that

the agreement with Bell’s law is a bit fortuitous, because the true surface exhibits (an
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Figure 3.2: Slip bond analysis. (a) Unbinding rates computed by InfrMetaD for the potential in
Fig. 3.1a given in μs−1. The log of the rates increases linearly with force (given in pN), apparently
following Bell’s law. The fit parameters are k0 = 21.90, and Δx‡=6.86 (R2 = 0.99). (b) Rates
computed by InfrMetaD plotted against the energy barrier computed by WTMetaD exhibit Ar‐
rhenius behavior. (c) The transition distances computed from FE calculations shrinks with applied
force as predicted by extended Bell’s theory102, meaning that not all assumptions of Bell’s law
are true. “Theory” values are the shift in the analytical potential with force. (d) The computed en‐
ergy barrier to unbinding decreases linearly as higher forces are applied, in accordance with the
assumption going in to Bell’s law. Ubarrier is the analytical barrier height.

expected) linear shift of the transition state distance with applied force that can be taken

into account using extensions of Bell’s law 102.

We now move beyond this trivial first test to assess whether InfrMetaD can capture
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Figure 3.3: Catch bond analysis. (a) Rates computed by InfrMetaD for the potential in Fig. 3.1b
with forces given in pN and rates in μs−1. This system exhibits catch‐slip bond behavior, and the
rate dependence can be fit well to a catch‐slip rate dependence (dashed line) as described in the
main text. (b) The free energy barrier in the y direction computed from data in Fig. 3.4 using
Eq. 3.2 shows an increase and decrease with force mostly commensurate with the rate depen‐
dence.

catch bond behavior in a model system. The catch bond potential we have created is

adapted from Ref.77, but we have added a third potential well that has a higher transition
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barrier to the product (top right) state (Fig. 3.1 (b)). We predict that upon pulling to the

right in x, the intermediate will be stabilized, and the barriers will change such that the

most favorable path is through the intermediate, which still has a slower rate of transition

to the product.

To compute the rates, 20 InfrMetaD runs were performed for forces in the range from

F = 0 to 13.3 pN. The forces were applied in the x direction, while the WTMetaD bias

was applied symmetrically in both the x and y coordinates (see Sec. 3.5.2.1 for simulation

details, with representative CDFs in Fig. 3.11). We observe for this model that the rate of

unbinding decreases in the range F ∈ {1, 9} and then increases from that point onward,

an example of a catch-slip bond (Fig. 3.3 (a)). The existence of the intermediate state

causes the rate dependence to deviate from Bell’s model except at the very smallest

forces. We can fit the observed behavior well using a sum-of-exponential catch-slip rate

dependence84 given by kbottom→top = kceβF(−xc)+kseβFxs where kc, xc, ks and xs have values

of 7.59, 1.38, 0.22, and 0.80 respectively for the curve in Fig. 3.3a.

We next use WTMetaD to check our intuition for how the free energy surface is chang-

ing. Our results in Fig. 3.4 show that the situation is similar but more complex than our

initial expectations. At small force, it can be seen that all or most MetaD transitions

took place directly between the lower and upper state. At F = 2 and F = 5, the force

in the x direction makes the intermediate state lower in free energy, which has a higher

barrier to escape. Between F = 5 and F = 9, the original stable state has vanished. The

rate is still decreasing and the barrier increasing, but this is due to the shift in relative

positions of the two minima. It is only once the upper state is fully to the right of the

initial intermediate just above F = 9 that the unbinding rate starts to increase again.
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Figure 3.4: FES for catch bonding potential. Free energy surface for the potential in Fig. 3.1b, at
different pulling forces. Pulling in the x direction lowers the system’s energy proportional to its x
location. This causes the upper state which is farthest to the right to become the dominant state
at higher forces, and also causes the lower‐left state to become unstable and vanish.

An effective one dimensional free energy surface in the y direction, A(y) can be com-
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puted by integrating out the x dependence,

A(y) =
∫ ∞

−∞
e−βA(x,y)dx (3.2)

The transition barrier between states for A(y) is shown in Fig. 3.3 (b). Here, the change

in barrier in the y direction is mostly consistent with the change in observed rates.

3.3.2 Cavity ligand model

Having demonstrated that InfrMetaD and also WTMetaD are capable of extracting the

force dependence of unbinding in accordance with our expectations, we now turn to

an explicit, all atom but simplified representation of a ligand unbinding process—a hy-

drophobic sphere contained in a hydrophobic cavity, solvated by water69,104,105.

We choose this model for two reasons: (1) through extensive studies, it is known that

the unbinding pathway for this system involves first moving sideways before exiting,

because a direct perpendicular exist requires water molecules to fill in a vacuum created

by the fluctuation of the sphere out of the cavity. This means that the unbinding process

is not well described by considering the obvious reaction and pulling coordinate (central

distance of the ball from the cavity)69,104,105, and (2) this system has been well charac-

terized in the absence of mechanical load by both WTMetaD and InfrMetaD, hence we

expect our calculations to be converged using the same protocols.

In order to perform InfrMetaD computations for this system, we should have a good

estimate of a distance that we consider the sphere to be unbound. Here, we first per-

formed WTMetaD calculations on this model with different applied forces, using the
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Figure 3.5: Solvated cavity‐ligand model from Ref. 105. The cyan and orange atoms (CW, CP)
form the receptor and the blue atoms (CF) make up the ligand. The radial and perpendicular dis‐
tance CVs used for biasing are labeled on the figure.

same protocol as Ref. 105 (full details in Sec. 3.5.2.2). FESs at T = 300K were obtained

for forces F=0 to 50 pN, in 2 pN intervals, where pulling forces are applied to the full

three-dimensional distance between the center of mass (COM) of the cavity and the cen-

ter of mass of the sphere. The MetaD bias was applied to two CVs, the radial (ρ) and

transverse (Z) distances between the COMs of the cavity and sphere. (Fig. 3.5).

Fig. 3.6(left) shows the computed FES in our two CVs at three different forces. As

described in previous work, the FES at zero force clearly shows that the escape of the

sphere involves a radial shift away from the central axis before exiting, which more easily
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Figure 3.6: FES vs. force for the cavity‐ligand model. (Left) FESs computed for the cavity‐ligand
system (Fig. 3.5) at three different forces. Pulling along a central distance coordinate increases
stability of the unbound state. (Right) One dimensional free energy surfaces computed by inte‐
grating out the ρ‐distance according to Eq. 3.2.
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allows water into the cavity69,104,105. When projected in just the transverse direction (Z),

Fig. 3.6(right), we see that the FESs resembles a prototypical double well potential.

Application of a pulling force lowers the free energy of the unbound state, as well as the

barrier between the bound and unbound state.

While these FESs can help us understand the mechanism of unbinding at different

forces, they do not give us direct access to the unbinding rates. Now that we know the

unbound state is at Z = 16 Å and ρ = 6− 10 Å, we apply InfrMetaD to this system for

the same force range.

To be consistent with earlier work, here we apply InfrMetaD using only a central

distance between the ligand and cavity 16 (see Sec. 3.5.2.2 for full details, with represen-

tative CDFs in Fig. 3.12). Although the unbinding process is much more complicated

than for a 2-well potential and we are using only a single bias coordinate, almost all un-

binding distributions pass the KS test (Fig. 3.12). The resulting rates seen in Fig. 3.7(a)

that unbinding rates increase exponentially with increasing force. Again combining our

data from WTMetaD and InfrMetaD, we show that unbinding rates for this cavity model

fit well to the Arrhenius law across our range of forces, but not nearly so well as for a

true one dimensional double well (Figure 3.7d). Interestingly, the transition distance

in the 1-dimensionalized potential is almost constant, as can be seen in Fig. 3.7c, while

the barrier shown in (d) decreases linearly; therefore, despite its non-trivial unbinding

pathway, in this sense this cavity-ligand model is closer to ideal Bell’s law behavior than

the 1d potential upon which the theory is based. We speculate that the relatively weak

dependence of transition distance on force is due to the rigidity of the cavity and ligand,

and this relationship could begin to break down if the cavity were made more flexible.
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Figure 3.7: Rates for the cavity‐ligand model. (a) Unbinding rates from InfrMetaD increase ex‐
ponentially with pulling forces. Fit parameters to Bell’s law are k0=0.0011 s−1 and Δx‡=6.31 Å
(R2 = 0.96). (b) The rate decreases exponentially with barrier height computed from WTMetaD
projected along the Z‐distance using Eq. 3.2. (c) The distance to the transition state in the Z di‐
rection decreases slightly but is relatively constant compared to the two well potential results in
Fig. 3.2c. (d) The free energy barrier in the Z direction decreases linearly with force.

47



3.3.3 Fully atomistic protein-ligand system

Given the reasonable results obtained from the cavity-ligand model, we sought to apply

our approach to a fully atomistic protein-ligand system. We chose to study the biotin-

streptavidin (SA/b) bond (Fig. 3.8) for three reasons: (1) it plays an important role in

many in vitro biochemical studies and is one of the strongest biological non-covalent

bonds known, (2) its bond rupture has been studied in non-equilibrium pulling experi-

ments and simulations95, and (3) its unbinding kinetics at zero force have been assessed

previously using InfrMetaD 106.

Computing unbinding rates of protein-ligand systems is an active area of research

and is clearly non-trivial. A major challenge, as discussed above, is choosing a good

reaction coordinate. In Ref. 106, Tiwary optimized a slow reaction coordinate using the

SGOOP algorithm 107 for the unbinding of the biotin ligand, which is a linear combina-

tion of distances between specific atoms of the ligand and residues in the binding pocket

(Fig. 3.8, Sec. 3.5.2.3). This optimized coordinate allowed InfrMetaD unbinding times

to pass the statistical test, although there are signatures of non-exponential behavior in

the data attributed to metastable intermediates along the unbinding pathway (seen also

in Ref. 95).

Following Ref. 106, we constructed a dimeric SA/b complex, and studied the un-

binding of one of the two biotin ligands using InfrMetaD. Using the identical reaction

coordinate (rc), and slightly different MetaD parameters (bias was deposited more in-

frequently, every 15 ps rather than 5 ps as in Ref. 106), we get an unbinding rate of

32.66 ± 8.22s−1, which as in Ref. 106 is much faster than the measured rate for the full
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Figure 3.8: Dimeric form of Streptavidin in complex with biotin. Only one biotin was chosen to
perform InfrMetaD. The other biotin molecule remained in its bound pose throughout the dura‐
tion of all simulations. Protein residues and distances going into the bias CV are labeled.

tetrameric complex. We then proceeded to compute the unbinding rates as a function

of force, with 20 InfrMetaD runs performed for forces in the range F = 0 pN to 72 pN

which were applied to the distance between the COMs of the binding pocket and biotin

as was done in steered MD simulations in Ref. 95. The biased rc consists of a couple

of distances from key residues to key atoms in biotin (highlighted in Fig. 3.8) while

the pulled CV is a single distance between the entire binding pocket and the entire bi-

otin molecule, see Sec. 3.5.2.3 for details. Unfortunately, despite numerous attempts to

adjust the InfrMetaD pace, hill height, and width, we were unable to obtain unbinding

rate distributions that pass the statistical tests for most forces. The rates obtained from

the parameters that gave our closest to exponential results are shown in Fig. 3.9, with
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representative CDFs that do an do not pass the KS test shown in Fig. 3.13.

Despite the fact that we cannot say with confidence that these unbinding times are

accurate or converged, the trend is consistent with experimental results measured by

dynamic force spectroscopy in Ref. 95, where the bond lifetime changes exponentially

with force by a factor of 30 as force ranges from 0 to 75 pN (see Ref. 95 Fig. 3E) for

escape from a putative ‘outer’ binding site. Overall, our predicted rates appear to follow

an exponential slip bond, however there are substantial deviations from the trend, which

coincide with what is likely a much more complex unbinding energy landscape in this

case. It is unclear whether substantial dips at 9 pN and 18 pN could correspond to any

catch-bond like behavior, or are simply an indication that our computations are not well

converged.

In order to gain some insight into the reason the InfrMetaD breaks down, we compute

an approximate FE surface using WTMetaD, while restricting the ligand to stay close

to its initial monomer using a ‘wall’ constraint (see Sec. 3.5.2.3 for full details). We

emphasize that these computations are performed in such a way that we can attempt to

characterize the unbinding process occurring in our InfrMetaD simulations, and not to

fully converge an unbinding free energy landscape, which would require a more sophis-

ticated approach such as Funnel Metadynamics 108,109; we have plotted the surfaces with

with dashed lines to help indicate this point.

The approximate average FE surfaces in Fig. 3.9b reveal multiple unbinding interme-

diates, as previously suggested in Refs. 95,106. Here, we can see that the roughness of

the surface becomes more pronounced for intermediate forces, contributing to the break-

down in the assumption of a single high barrier, and perhaps resulting in outlier rates
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in the InfrMetaD computations such as seen at F = 9 pN. At larger forces in Fig. 3.9b,

the surface becomes smoother again and the unbound state is clearly favored. Similar

approximate surfaces projected on the pulling coordinate, which is what we would nor-

mally tend to show to get insight into the unbinding process, are shown in Fig. 3.17.

However, showing the surface in terms of the reaction coordinate used in InfrMetaD is

more appropriate for diagnosing why the assumptions going into the rate computations

are not being satisfied. Finally, we note that the variation between runs is quite large,

and have included Fig. 3.18 showing each FES estimate shown in Fig. 3.9b separately

along with the standard deviation between runs to highlight this point.

In total, these MetaD and InfrMetaD data together suggest that while the coordinate

obtained from Ref. 106 was apparently good enough for use at F = 0 pN, it is not

sufficiently optimized for higher forces. This poses a challenge going forward as to

whether a single CV or set of CVs can be determined that is appropriate for all forces,

or whether a new reaction coordinate must be determined for each pulling force, since

the application of force can change the underlying free energy landscape in unpredictable

ways.

3.4 CONCLUSION

Thermodynamic and kinetics calculations were performed for various models with in-

creasing complexity to determine the force dependence of transition rates. In the case

of a simple two-well potential and a hydrophobic ball/cavity system, we showed that

unbinding rates increased exponentially with force, while a model catch bond system
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Figure 3.9: Rates for the SA‐biotin model. (a) Unbinding rates computed from InfrMetaD show an
overall slip bond, but a poor fit to Bell’s law. The fit parameters used are Δrc‡=2.1 Å, k0=43 s−1

(R2 = 0.59). This fitted Δrc‡ is not close to the transition distance observed in the FES estimates.
(b) Estimation of free energy surfaces obtained from WTMetaD show a rough landscape for lig‐
and escape at small force, as well as a transition to a tilted landscape favoring unbinding from
F = 12 pN and above. Surfaces for other forces can be found in Fig. 3.17.

showed a decrease in unbinding rate corresponding to stabilization of an intermediate.

For the biotin-streptavidin interaction, the predicted presence of intermediates causes

InfrMetaD to break down, as the unbinding process is no longer characterized by a sin-

gle high energy barrier (using the chosen bias CV). Intriguingly, our rough results for

the free energy surface from MetaD show very non-monotonic changes with force that

could be indications of metastable unbinding states stabilized by the applied force. Our

results also suggest, as described in earlier work, that the failure of unbinding time cu-

mulative distributions to be exponential are reflective of the complexity of the unbinding

pathway, and can be used to help diagnose whether a good reaction coordinate has been

chosen for InfrMetaD in the presence of force.
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We believe that our prediction that the hydrophobic cavity system exhibits true Bell’s

law behavior is the first such explicit prediction from equilibrium MD simulations.

The concordance between MetaD and InfrMetaD results and the relative efficiency of

InfrMetaD do suggest that InfrMetaD is a promising technique to evaluate the force-

dependence of unbinding rates for complex systems. However, its failure to pass sta-

tistical sanity checks for most forces in the case of SA/b serves as a warning to those,

including us, who hope to apply such techniques to even more complex systems, such

as large protein-protein complexes that exhibit catch bond behavior.

Given our current approach though, it remains to be seen whether the overall trend

of increasing or decreasing rates computed from InfrMetaD, even in the presence of

this break-down, could be a fingerprint of catch or slip bond behavior, and give some

insight into the mechanisms. This would be analogous to the ways in which steered-MD

has given important insights into unbinding or unfolding reaction mechanisms despite

generally producing unrealistically high forces at unrealistically fast rates.

In the case of the SA/b model, it was chosen as a good receptor-ligand prototype be-

cause an optimized coordinate had been previously computed for use in InfrMetaD. But,

this coordinate seemed to be insufficient once forces were applied. It’s also possible,

however, that since intermediates exist between the bound and unbound states as shown

in Ref. 95,106, it’s not clear where the transition state or states are located in the absence

and presence of forces. This could potentially lead to biasing the transition states when

running InfrMetad simulations affecting the accuracy of the rate calculations.

In the upcoming chapters, we explore other equilibrium methods for computing FES’s

and rates, to determine whether they are more suitable for computing force dependence.
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3.5 SIMULATION DETAILS

Scripts and data to produce all figures in this chapter, as well as input files to generate the

data can be found at https://github.com/hocky-research-group/PenaUnbindingPaper

3.5.1 Pulling

The PLUMED plugin library71,110 was used to apply WTMetaD and pulling forces. A

pulling force is achieved via a bias generated by a linear restraint formulated in PLUMED

as:

Uexternal = F(Q− a) (3.3)

where F is a force constant in units of energy over length in Q units, Q is the CV to which

the force is being applied and a is the location of the restraint, which only sets the zero

of energy but does not change the force applied. Therefore, in order to apply pulling

forces, a negative F is fed to PLUMED. For our atomistic simulations, Q is a distance

based CV in the protein, and units of kcal/mol and Å were used for energy and distance

respectively, thus, forces were applied in units of 1 kcal/(mol Å). Piconewtons can be

computed into this unit system with ≈ 69.48 pN equivalent to 1 kcal/(mol Å).

3.5.2 Rate Calculation and FES Estimates

To compute rates, many simulations must be run for each pulling force. Simulations

were run up to the point where the ligand reached the unbound state. The COMMIT-

TOR feature of PLUMED was used to terminate the simulation once the specified CVs
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reached the unbound state. A WTMetaD bias was applied using the METAD feature

of PLUMED using the ACCELERATION keyword, such that α was computed within

each simulation. The time at which the unbound state was reached and the acceleration

factor at that time were recorded for each run; the product of the simulation time and

acceleration factor gives the scaled residence time for each run. These sets of scaled

transition times were used to determine the mean residence time (τ) and unbinding rate

(τ−1) for a given force using the following procedure.

ECDFs were built by histogramming the transition times against a set of log-spaced

bins and getting a cumulative sum of the histogram divided by the total number of tran-

sition times. The ECDFs were fitted to the ideal CDF described by Eq. 2.20 to obtain τ

and subsequently the rate. To determine how well the assumptions of InfrMetaD were

met during the simulations and to validate computed rates, the protocol of Ref. 70 was

followed. The two sample Kolmogorov-Smirnoff test determines the similarity between

the transition time distributions. The null hypothesis is rejected if the transition times

obtained from MetaD and the transition times obtained randomly from an exponential

CDF with corresponding τ parameter do not come from the same underlying distribution

at the 5 % significance level. Additionally, the p-value provides a measure of goodness

of fit. If the p-value of the KS test is higher than 0.05 then the sample distributions are

said to come from the same underlying distribution.

3.5.2.1 Model potentials

Model systems from Fig. 3.1 were simulated using the PESMD tool in PLUMED. PESMD

performs MD using Langevin dynamics 14. Inputs are given in reduced units, but con-
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verted internally to SI units by PLUMED. For both potentials the temperature was set to

1.0, the friction constant to 1.0, the position was set to the corresponding starting point

as described below, the seed was set to a random number, and the step size was set

to 0.002. Inside PLUMED the time step was 0.002 ps, kB=0.008313 kJ/(mol K), and

kbT=2.494 where T=300 K as specified in the METAD command. Temperature in LJ

units is given by (T∗ = kBT/ε) where ε=2.494. The force applied was in units of kJ/(mol

nm); 1 kJ/(mol nm) is equivalent to 1.66 pN.

The potential in Fig. 3.1a is given by U(x) = 0.005(x− 5)2(x− 20)2, with a a bound

state at x = 5 an unbound state at x = 20 separated by an energy barrier corresponding

to 15.8 kJ/mol.

The potential in Fig. 3.1b is constructed as a Gaussian mixture model, combining the

two well potential from Ref. 77 with an additional harmonic potential. The potential

energy is given by

U(x, y) = − ln(e−((0.4y−1)2)−4)2+ 1
2 (x−6−y)2 + 0.2e−(x−11)2−2(y+0.5)2) (3.4)

The starting minima are located at (3.5, -2.5), (13.5, 7.5) and (11, -0.5) representing the

bound, unbound and intermediate states respectively. The bound and unbound state are

separated by a high energy barrier of 16 kJ/mol. The barrier between the intermediate

state and unbound state is higher than from the bound state, 21 kJ/mol.

For the double well potential InfrMetaD was performed with HEIGHT=1.2, SIGMA=0.2

BIASFACTOR=6 and PACE=4500. A total of 20 simulations were run for each pulling

force; simulations were run up to the point at which the unbinding CV reached the un-

bound state. The unbound state was located at x = 20. FES calculations were performed
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with WTmetaD for every pulling force using the same parameters as above except for

PACE which was set to 650 and these simulations were performed for 7.5 × 106 MD

steps. For both rate and FES calculations the starting point was the same, with the first

particle at the origin and the second at x = 5.

For the three well potential InfrMetaD was performed with HEIGHT=1.2, SIGMA=0.2,0.2

BIASFACTOR=6 and PACE=7500, both the x and y component of the distance were

biased but the pulling force was applied only in the x direction. Similarly here, a total

of 20 simulations were run at each pulling force until the unbound state was reached.

FES calculations were performed with WTMetaD for every force using the same pa-

rameters as above except for PACE and BIASFACTOR which were set to 500 and 14

respectively. These simulations were performed for 2×107 MD steps. For FES calcu-

lations all simulations started at the same point, x = 3.5, y = −2.5. However, for rate

calculations we first determined the coordinates of the minima at each force as these

minima shift when forces are applied. For lower forces the simulation start at the first

minimum but as forces increase this minimum disappears and starting from F = 6, the

simulations are initiated from the position of what was the intermediate state (see Fig.

3.14). The unbound state shifted from x = 13.5, y = 7.5 at 0 force to x = 22.6, y = 8.6 at

the last force while the bound state shifted from x = 3.5, y = −2.5 to x = 7.5, y = −1.7

at F = 5, starting from F = 6 this minimum disappears and simulations were started

from x = 12, y = −0.5 which continued shifting up to x = 13, y = −0.5 at the last

force. The starting positions and COMMITTOR bounds were set accordingly.
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3.5.2.2 Cavity-ligand model

The model consists of a semi-hollow cube of pseudo atoms resembling carbon atoms

that are ordered in a hexagonally close-packed lattice. Moreover, the cube consists of

two categories of hydrophobic atoms; the cavity atoms and the anchor or wall atoms.

The radius of the cavity is 8 Å, and the lattice constant a is 2 Å. The ligand is a sixty-atom

(C60) fullerene (bucky ball), which has a weak van der Waals attraction to the cavity.

The atoms in the cavity have a higher attraction to the ligand than do the anchor atoms,

and the whole complex model is solvated with TIP4P water (Fig. 3.5). GROMACS 111

files for this model from Ref. 105 were provided by the Mondal group, and identical

GROMACS parameters are employed here.

Non-bonded interactions are determined by GROMACS using the OPLS combina-

tion rule. The non-bonded interactions of the CP-CP, CW-CP, and CW-CW pairs were

excluded by setting their LJ parameters to 0. The entire lattice was fixed in position. The

interaction between the different molecules other than water are summarized in Table

3.1.

InfrMetaD was performed using HEIGHT=0.287, SIGMA=0.3, BIASFACTOR=15

and PACE=5000. Here, units were set to Å, fs, and kcal/mol for length, time and energy

respectively. Both the InfrMetaD bias and the pulling force were applied on the 3D

distance between the COMs of the cavity and ligand. A set of 20 simulations were run

for each pulling force until the unbound state at Z=16 Å, ρ=6-10 Å was reached. For

all forces each simulation in the set of 20 was started from a different starting point

obtained from 20 separate equilibration runs.
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Table 3.1: Lennard‐Jones parameters for cavity and ligand atoms. CW, CP, and CF refer to the
anchor, cavity, and fullerene atoms respectively. The parameters for inter‐molecular interactions
are described by combination rules: σij =

√σiσj and εij =
√εiεj

i j σ(nm) ε( kJ
mol)

CF CF 0.35 0.276144
CW CW 0.4152 0.00240
CP CP 0.4152 0.00800
CF CW 0.3812 0.02574
CF CP 0.3812 0.04700

FES calculations were performed for all forces using HEIGHT=0.478, SIGMA=0.3,0.1,

BIASFACTOR=15, and PACE=300. The bias was applied to both the transverse and ra-

dial distance of the COM of the sphere from the COM of the cavity respectively while

the pulling force was applied to the 3D distance. PLUMED walls were applied for the

transverse and radial distance CVs at 21 Å and 12 Å, respectively. A single simulation

was performed at each force to obtain the FES. All FES calculations were run for 50 ns.

In all cases, a 2 fs MD timestep was used.

3.5.2.3 Streptavidin-Biotin Complex

In Ref. 106 the dimeric version of the biotin-streptavidin complex was studied to deter-

mine an unbinding CV and compute an unbinding rate. Here we used the same system

and calculated unbinding rates at several pulling forces. For the SA/b atomistic system,

a bound structure of biotin and a dimeric form of streptavidin was obtained from the

protein data bank with PDB ID: 3RY2 112 (Fig. 3.8). The all atom AMBER ff99SB*-

ILDN 113 force field was used to describe all bonded and non-bonded interactions in the
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protein and the TIP4P model was used for water. The charged biotin ligand was param-

eterized with AM1-bcc charges and GAFF 114 parameters as in Ref. 106.

The ligand and protein structures were combined and neutralized with counter ions.

The complex was then solvated with TIP4P water and an ion concentration of 150 mM

NaCl was added to the system to approximate physiological/experimental conditions.

The full system’s energy was later minimized and subsequent NVT and NPT 1 ns equi-

libration was performed while restraining the complex in its bound pose. The Nose-

Hoover thermostat 115 and the Parrinello-Rahman 116 barostat were used in the NPT pro-

duction runs at 300 K, with a coupling time of 1 ps for temperature and 2ps for pressure.

A short range cutoff of 1.2 nm was employed for the electrostatics.

For rate calculations, an optimized one dimensional reaction coordinate reported in

Ref. 106 was used as the collective variable for InfrMetaD. The reaction coordinate is a

linear combination of two distances, rc = ψ1+0.75ψ2. Where ψ1 is the distance between

the COM of the oxygen (OG) in residue S45 and the nitrogen in residue N49, and the

COM of the C11 and N2 atoms in biotin, and ψ2 is the distance between the carbon atom

(CG) atom in residue D128 and the N1 atom in biotin. The unbound state was located at

rc = 30 Å.

InfrMetaD was performed using HEIGHT=0.478, SIGMA=0.2, BIASFACTOR=15,

and PACE=7500. The ligand was pulled along the distance between the COM of the

binding pocket and the COM of the ligand with constant force (binding pocket consists

of residues:L25, S27, Y43, S45, V47, G48, A50, W79, R84, A86, S88, T90, W92,

W108, L110, and D128 following numbering in 3RY2 112 as in Ref.95). A total of 20 runs

were performed for each force in the 0 to 72 pN range in intervals of 3 pN. In this case,
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we followed the same protocol as in Ref. 69 and started all simulations in the set of 20

from the same equilibrated structure.

FES estimates were obtained by running WTMetaD simulations at each force. The

parameters were set as: HEIGHT=0.478, SIGMA=0.2 BIASFACTOR=12 and PACE=600.

PLUMED walls were applied to both ψ1 and ψ2 at 22 Å and 14 Å respectively. The ligand

was pulled along the distance between the COMs of the binding pocket and the ligand

with constant force. The simulations were started from separate equilibrated structures.

The FES estimate for the system at 0 force (Fig. 3.9) was obtained by running 20 such

WTmetaD simulations for 100 ns each. Then the plumed function sum_hills feature was

used to obtain an FES for each simulation. Then these surfaces were averaged to obtain

the FES estimate. The same procedure was followed for the rest of the forces although

only 13× 50 ns simulations were performed for each. The FES estimates shown in Fig

3.17c,d were obtained via last-bias reweighting using PLUMED. 117. For each simulation

the metadynamics bias potential at the end of the simulation was obtained from the file

containing the hills. Corresponding weights were obtained via the REWEIGHT_BIAS

function which takes the last bias potential as input. The weights were fed to the HIS-

TOGRAM routine to histogram the pulled CV. Finally, the resulting histogram was

converted to a FES using the CONVERT_TO_FES command. The PLUMED driver

program was used to run all commands using as input the trajectories of the simula-

tions described above. As for the cavity-ligand model, all units were set to Å, fs, and

kcal/mol for length, time and energy respectively, and all simulations were performed

in GROMACS 111 using a 2 fs MD timestep.
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3.6 SUPPLEMENTAL FIGURES

In this section, the CDF fits for each rate calculation which are used to assess the good-

ness of fit of the collected escape times to an exponential CDF are included. Then, for

the catch potential, one dimensional FES’s were plotted to show how the energy bar-

rier in each coordinate is affected with pulling forces. In addition, the results of rate

calculations when biasing one CV as opposed to two are shown. For the cavity-ligand

model, rate calculations with different paces of bias deposition were performed to de-

termine how rates are affected. Plots below show that the pace has little to no effect

on unbinding rates. Finally, estimates of the FES of streptavidin-biotin unbinding at

different forces are shown for reference.
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Figure 3.10: CDF fits for slip potential. Representative CDF fits are shown at various forces for
the potential in Fig. 3.1a. For the simple 1D model, the CDF fits are excellent and all fits for all
forces pass the two‐sample KS test.
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Figure 3.11: CDF fits for catch potential. Representative CDFs fits are shown at various forces for
the three‐well system in Fig. 3.1b. One out of 21 fits did not pass the two‐sample KS tests; the
rest of the CDF fits have p > 0.05 and pass the two‐sample KS test.
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Figure 3.12: CDF fits for cavity‐ligand model. Representative CDF fits are shown at various forces
for the cavity ligand system. One out of 26 fits did not pass the two‐sample KS tests; the rest of
the CDF fits are excellent and pass the two‐sample KS test.
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Figure 3.13: CDF fits for SA‐biotin. Representative CDF fits for biotin‐streptavidin are shown for
the forces at which the CDF fit does and does not pass the two‐sample KS test. Besides the three
forces shown with p > 0.05, all other fits failed the test.
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Figure 3.14: FES projections to 1D surfaces for catch potential. For the model in Fig. 3.1b, FES
projected to the distance components. In the y component the height of the barrier increases
until force 9 at which point it starts decreasing. In the x component, the barrier decreases with
increasing force until the first minimum disappears, and only one single minimum is available at
the lower area of the space.
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Figure 3.15: Rates for catch potential when biasing a single CV. For the model in Fig. 3.1, the
rates are larger when only the y component is biased while the x component is pulled on. In the
case where both components are biased, the system spends more time in the first and intermedi‐
ate minima from which is harder to escape.
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Figure 3.16: Rates for cavity‐ligand model at various pace depositions. The pace of the bias de‐
position has little effect on the unbinding rates for the cavity ligand model. The transition dis‐
tance increases from 6.31 to 6.72 to 6.95 but the magnitude of the rates remain the same. The
computed rates in each new case still pass the KS test and for several CDF fits p‐values were
higher than p‐values obtained with PACE=10ps. Rate calculation with pace of 20 ps simulations
were run with same parameters and same set up (20 runs per force) but from 0 to 48 pN at 4 pN
intervals.
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Figure 3.17: Additional data for the biotin‐streptavidin system. (a) FES estimate as a function
of the biased rc as described in the main text at 0 force. (b) The pulling force causes the ligand
to exit the binding pocket and stay away from it for most of the simulated time. At larger forces
the ligand hardly goes back to the binding pocket, the unbound state is largely favored as forces
increase. (c) FES estimate as a function of the pulled CV at 0 force. This CV is the 3D distance
between the binding pocket and biotin. (d) Similarly to what is seen in (b), the unbound state is
far away from the bound state and at larger forces the free energy favors the unbound state.
Furthermore, the intermediate states that were initially present at lower forces disappear at larger
forces. The FESs are averages of several surfaces obtained from multiple simulations for each
force. The FE surfaces were obtained via the plumed function sum_hills for the biased CV, and
via last bias reweighting for the pulled CV which was not biased by metadynamics, see section
3.5.2.3.
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Figure 3.18: FES estimates for SA‐biotin at low forces. FES estimates at low forces from Fig. 3.9b,
with error bars showing standard deviation across runs.
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CHAPTER 4

THE ACTIN-VINCULIN CATCH-BOND
This chapter was adapted from Ref. 118

4.1 ABSTRACT

Vinculin forms a catch bond with the cytoskeletal polymer actin, displaying an increased

bond lifetime upon force application. Notably, this behavior depends on the direction of

the applied force, which has significant implications for cellular mechanotransduction.

In this chapter, we conduct a comprehensive molecular dynamics simulation study, em-

ploying enhanced sampling techniques to investigate the thermodynamic, kinetic, and

mechanistic aspects of this phenomenon at physiologically relevant forces. We dis-

sect a catch bond mechanism in which force shifts vinculin between either a weakly-

or strongly-bound state. The results demonstrate that models for these states have un-

binding times consistent with those from single-molecule studies, and suggest that both

have some intrinsic catch bonding behavior. We provide atomistic insight into this be-

havior, and show how a directional pulling force can promote the strong or weak state.

Crucially, our strategy can be extended to catch the difficult-to-capture effects of small

mechanical forces on biomolecular systems in general, and those involved in mechan-

otransduction more specifically.
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4.2 INTRODUCTION

Mechanotransduction is a process by which cells respond to mechanical forces acting

outside and inside the cytoplasm. Outside the cell, shear stress from the flow of fluids or

strain from the increase or decrease in the extracellular matrix (ECM) stiffness generate

mechanical loads that are transduced into signals by integrins which travel down to

the cytoplasm causing the cytoskeleton to rearrange and resist perturbations. On the

other hand, inside the cell forces can be generated by polymerization of actin subunits

promoting the formation of focal adhesions (FA) or motor proteins like myosin ii which

pulls on actin filaments to generate traction forces causing focal adhesions to deform the

ECM24,25,119.

Evidently, several biological macromolecules contribute to the mechanotransduction

ability of cells. For example, the ECM is a highly interconnected protein scaffold which

provides structural support for cells and tissues, and to which cells adhere via ligand-

integrin interactions25,119. Integrin receptors are transmembrane proteins that connect

the outward ECM to the cytoskeleton via focal adhesions and are responsible for sensing

mechanical forces and transducing them into signals both inside and outside the cell24,25.

Inside the cell, the cytoskeleton, which is a filamentous network consisting of several

different proteins, is responsible for maintaining the cell’s shape which it’s achieved by

tuning adhesions to withstand external forces, and it also responds to internal forces by

adjusting its structure dynamically24,25.

The cytoskeleton in mammalian cells consists of three types of filaments; namely, in-

termediate filaments, microtubules, and filamentous actin24,25. The actin cytoskeleton is
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a prototypical example of a mechanosensing structure due to its role in mechanosensitive

properties of cells which include cell shape structure, motility, and division 120. Actin

filaments (see Fig. 4.1) consist of globular actin monomers which are composed of 375

residues and are able to tightly bind ATP or ADP in the presence of metal ions like Ca2+

or Mg2+ 121. These actin monomers polymerize into non-covalent, semi-flexible, polar

polymers with structurally different ends; by coupling polymerization to nucleotide hy-

drolysis, pushing and pulling forces are generated25,120,121.

Figure 4.1: Short actin filament. An actin filament has two distinct ends; namely, the pointed (‐)
end and barbed (+) end. The filament is helical‐like and consists of many globular actins (shown in
several colors) and has many binding sites. Structure was obtained from Ref. 122.

Actin monomers and filaments have dozens of known binding proteins (ABPs) that

control an entire dynamical ecosystem through either (1) regulation of the assembly and

disassembly of individual filaments, (2) crosslinking of filaments into networks, (3) or

actively exerting pulling forces on filaments 121,123. There are now several examples of

how pulling forces on ABPs or on actin filaments can change the binding affinity of an

ABP to actin filaments, resulting in mechanical feedback loops that help quickly tog-
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gle the local morphology of the network 10,124,125,126. One such ABP is vinculin33,127,128.

Vinculin is a critical protein that can be found in both focal adhesions and adherens junc-

tions, and it’s crucial in mechanotransduction. It’s thought that recruitment of vinculin

stabilizes adhesions when they are under mechanical load, promotes polymerization

of actin, and it mediates the transmission of forces between the ECM and cytoskele-

ton 127,128.

Figure 4.2: Vinculin in its inhibited conformation. The head domain (Vh) is shown in green and the
tail domain (Vt) is shown in blue. Structure was obtained from Ref. 129.

Vinculin is an auto-inhibiting protein (see Fig. 4.2), it consists of 1066 amino acids

and its tertiary structure consists of two major domains; a large head (Vh) domain and

a smaller tail (Vt) domain. Vinculin mediates mechanotransduction by interacting with
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several other binding proteins. For instance, the larger Vh is able to bind proteins such as

talin,α-catenin and α-actinin among others 127. These interactions are key to strengthen-

ing the connection between integrins and the cytoskeleton 127,128. Saliently, this physical

connection is mainly mediated by interactions with talin and the binding of the smaller

Vt domain to the actin filament 128. The Vt domain consists of a α-helical bundle con-

taining five helices and a long disordered C-terminal and it does not have any known

catalytic activity, it binds to actin via non-covalent interactions that seem to strengthen in

the presence of forces but remain transient to allow the cytoskeleton network to dynami-

cally reconfigure itself 127,128. As stated earlier, this force enhanced behavior is commonly

called a catch-bond 23,49.

Catch bonding behavior is challenging to study, but has gained great interest starting

in the early 2000s. With the advance of experimental techniques able to probe un-

binding processes with high precision (mainly through microfluidic flow chambers or

single molecule force spectroscopy apparatuses), this phenomenon has been found in

an increasing number of systems involved in adhesion23,28,130, blood coagulation 131, and

mechanotransduction28,33,132.

Experimental work on the actin-viculin complex by Huang and colleagues (Ref. 33)

showed evidence for a direction dependent catch-bond between actin and vinculin which

suggests that this asymmetric catch bond can be a possible mechanism by which cells

sense and respond to mechanical forces and also sense directional physical cues which

are important in processes like tissue patterning in embryo development33,128. In an op-

tical trap assay, an actin filament was held taut by two optically trapped microspheres.

Then, a motorized stage under the filament carrying a bead coated with many vinculins
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was oscillated back and forth resulting in many binding and unbinding events. In this

set up a vinculin binding event would displace a trapped microsphere at either end of

the actin filament causing the trap to pull the microsphere holding the actin back to

its center. Their measurements showed that lifetimes of the complex increased at cer-

tain loads in one direction more than in the opposite direction, and then showed that

this directionality could arise from actin’s polarity. After determining the positive and

negative end of the filament they observed longer lifetimes when the load was applied

towards the negative (pointed) end while shorter lifetimes were observed when the load

was applied towards the positive (barbed) end. In addition, they repeated measurements

using only the actin binding component, Vt, and the same behavior was observed al-

though with shorter lifetimes33. Later, these optical trap measurements were fitted to

the two-bound state catch model (three-state). In this model, there are two bound states

that can transition from one to the other and one unbound state accessible from either

bound state. Moreover, the rate of unbinding is lower for one state (strong), than the

other (weak) and when pulling forces are applied the overall lifetime of the complex in-

creases23,29,55,84,133,134. The fitted parameters indicated that the major effect of the force

was to slow down the rate of transition from the strong state to the weak state and, to a

smaller degree, to promote transition from the weak state to the strong state33,54.

Vinculin is among other ABPs that have catch bond behavior. The actin binding

domains of related proteins such as talin 135 and α-catenin 132 also exhibit catch bonding

behavior, and the proposed allosteric mechanism in the latter case involves a transition

from a five-helix weak binding state to a four-helix strongly bound state, where one

part of the bundle has detached and become disordered54,132. This mechanism may be
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conserved in the actin-vinculin complex as the actin binding domains of vinculin and

α-catenin are similar in structure and there is evidence that upon binding to actin Vt

transitions from a five-helix bundle to a four-helix bundle with one helix detached 128,132.

An alternative proposed mechanism involves the strengthening and formation of new

H-bonds between key residues of Vt’s H4-H5 helices and actin when pulling toward the

larger catch bond and a relatively low strengthening of H-bonds when pulling towards a

lesser catch bond direction 136. For this hypothesis, there is no explicit notion of different

bound states.

These mechanisms are indirectly inferred from experimental measurements, because

it has been nearly impossible to directly isolate structures (e.g. when using X-ray crys-

tallography or electron cryomicroscopy (CryoEM)) that are only activated upon applied

force, although emerging approaches may enable this going forward 137. One can try to

mimic the allosteric effect of force using mutations on the native, zero-force structure,

or, compare single-molecule force spectroscopy measurements with and without the

putative allosteric regulator in the protein structure51,132,138. However, there are also sit-

uations where static mutated structures alone failed to explain the catch-bond behavior,

as was recently demonstrated in the case of the FimH-mannose complex52.

Instead of using indirect methods to link catch bonding behavior to various structural

states, we aim to directly predict the vinculin-actin catch-bonding behavior using atom-

istic molecular dynamics (MD) simulations. In theory, we can predict the lifetime of

the bound state in the absence and presence of mechanical forces by running multiple

independent simulations and calculating the average time until dissociation. These sim-

ulations can then provide detailed molecular information about the possible unbinding
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pathways, and insight into which interactions are modulated by force, and how these

contribute to the force dependence of the unbinding kinetics62. As stated before, this is

not easily achieved, because MD simulations of isolated proteins are currently compu-

tationally limited to the microsecond timescale, whereas the lifetime of protein-protein

interactions are typically much longer (milliseconds to seconds)62; in the case of sim-

ulating catch bonding this problem is only exacerbated since we expect that applying

force would make the unbinding happen more slowly. Earlier studies of protein un-

folding with force typically used non-physiologically large forces to observe significant

changes within the accessible timescale of MD simulations61,139,140,141. However, using

these extra large forces would not test the fundamental hypothesis that relatively small

forces increase unbinding times.

To overcome these limitations, we deploy a sophisticated simulation strategy combin-

ing the application of directional constant pulling forces with enhanced sampling MD

techniques; this allows us to compute the effect of applied forces on both estimates of

unbinding free energy barriers and directly on unbinding rate constants for the interac-

tion of Vt with actin in a very large but still accessible amount of simulation time (∼200

μs of MD for 250-300K atoms). While the combination of low forces and free-energy

landscape determination using enhanced sampling has been done before for unfolding

of coarse-grained proteins and small peptides82,142,143,144, this approach, to the best of our

knowledge, has never been deployed for such a complex and challenging system. We

use this framework to elucidate and provide a molecular picture supporting models for

the directional catch-bonding underlying the actin-Vt interaction.
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4.3 COMPUTATIONAL APPROACH

4.3.1 Systems to study

It has been proposed in cryo-EM studies that Vt’s catch bonding behavior arises when

mechanical force promotes transition of the protein’s structure from a strongly to weakly

bound state, where the H1 helix (see fig) detaches from the four helix bundle 53,54. In

solution, the Vt protein consists of a bundle of five α−helices 127,145. However, the Cry-

oEM structure of Vt bound to actin showed a four helix bundle, with the fifth helix (H1)

being unresolved, and hence this has been hypothesized to represent the strongly bound

state53,119. Moreover, it has been suggested that the weakly-bound state consists of a

five-helix bundle similar to what is observed for Vt alone in solution; hence the ‘cou-

pled folding-binding’ of H1 serves as an allosteric regulator of Vt affinity for actin53,54,128.

Pulling on H1 in one direction versus the other has an asymmetric effect as one direction

promotes dissociation from the four-helix bundle while the other favors association54.

However, this does not fully explain why catch bonding behavior is observed in both di-

rections, and which molecular motifs cause one state to be a strong binder and the other

one a weak one. Hence, here we wished to test whether Vt alone in either its weakly

bound state or especially its strongly bound state could exhibit catch bonding behavior.

To that end, we built two primary models to study (Fig. 4.3A,B). We first focused

on the proposed strongly bound state which we termed ‘Holo’, which is derived di-

rectly from the bound structure in Ref. 53 (PDB: 6UPW). Our second system, termed

‘Aligned’, was built by taking the isolated structure of Vt from Ref. 145 (PDB: 1QKR)
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Figure 4.3: (A) Illustration of the two models under study (CTE is not included in this picture). It
is hypothesized that upon binding actin (light green) the vinculin tail domain (Vt) converts from
a five helical state to a four helical state, with the H1 helix being unresolved in the experimental
structure. (B) Overlay of two Actin‐Vt models. The Aligned (aVt, colored red) configuration con‐
tains helices H1‐H5 while Holo (hVt, blue) has only H2‐H5. Actin subunits A1 and A4 (colored
gray) are restrained in the MD simulation to maintain the helical structure and prevent rotation.
Arrows show primary collective variables (CVs) studied, Q∥ and Q⊥, which characterize move‐
ment of vinculin along and perpendicular to the filament, respectively. These CVs are defined
using the vector v⃗13 which connects the center of mass (COM) of actins A1 and A2 (p1) and the
COM of Vt helices H2‐H5 (p3), and the vector v⃗12 which connects the COM of actins A4 and A5
(p2). (C) Superposition of the Aligned and Holo configurations in an equilibrated configuration
shown separately and as in their binding pocket, with α‐helices and C‐terminal extension (CTE)
labeled. (D) Plot shows approximate experimentally derived Vt unbinding lifetimes as a func‐
tion of force produced by a three‐state model reported in Ref.33 (see Sec. 4.7.1). Catch bonding
behavior is observed when Vt is pulled parallel to actin in both directions, but is stronger when
actin is pulled towards the pointed (‐) end, i.e. Vt moves towards the barbed (+) end. Structures
show representative snapshots from MD simulations combining pulling and enhanced sampling
described below.
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and aligning the α-carbons of residues in helices H2-H5 with the structure in 6UPW.

These two systems, which exhibit stable positioning and topology, serve as models of

the strongly (Holo) and weakly (Aligned) bound states (Fig. 4.9–4.13). Finally, we built

a ‘Holo+H1’ model, where the H1 helix residues from the Aligned model were added

to our equilibrated Holo structure in a disordered arrangement. Further details for all

of these systems are given in the Methods Sec. 4.6.1 and simulation details are given in

Sec. 4.6.2. In all cases, the actin filament consisted of five subunits. To roughly main-

tain the helical pitch of actin without directly affecting the interaction with vinculin,

position restraints were added to the first and fourth actin monomer in the structure; this

also allowed us to use an oblong simulation box to minimize computational cost, since

the filament was not able to rotate. The filament was solvated with at least 1 nm layer of

water, which we determined is sufficient to allow vinculin to fully unbind. We note that

prior MD pulling studies on the actin-Vt interaction have used three actin 136,146 based

on the structure in Ref. 128, however, using only three actin subunits requires that they

be fully restrained, which we wanted to avoid as much as possible. While we would

like to study longer actin filaments to further reduce the impact of restraining part of the

filament, the increased computational cost is much restrictive.

4.3.2 Pulling and biasing scheme

To pull Vt in a manner similar to the OT experiments, we first defined two collective

variables (CVs) that describe the movement of Vt in directions perpendicular and paral-

lel to the filament respectively, Q⊥ and Q∥ (Fig. 4.3C, Sec. 4.6.1). Although large values

of Q⊥ correspond to unbound poses of Vt, we also monitored the unbinding process
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through computing the fraction of key contacts maintained between H4 and H5 of Vt

and actins A3 and A5 (Qcontact) (see Sec. 4.6.3).

To probe the catch bonding behavior seen in the OT experiments, a constant force is

applied to Q∥ in either the positive or negative direction as oriented in Fig. 4.3. Experi-

mentally, pulling actin towards its “pointed” end results in a stronger bond than towards

its “barbed” end (Fig. 4.3D)33. To match this sign convention, we defined F∥ < 0 to be

the direction of the stronger catch bond, where Vt moves towards the barbed end.

The FES for Vt bound to actin was estimated using the On-the-fly Probability En-

hanced Sampling/Metadynamics approach (OPES-MetaD) 15. OPES-MetaD accelerates

motion along the chosen CVs by iteratively updating an applied bias that pushes the sys-

tem away from previously explored regions (see Sec. 4.6.4). To probe the effect of force

on Vt unbinding, we computed the FES in the two-dimensional space of Q∥ and Q⊥,

while varying an additional constant force on Q∥. Because of the complexity of the un-

binding process, we performed several independent OPES-MetaD simulations and then

combined and reweighted the CV data to obtain a sufficiently descriptive estimate of

the FES as described in Sec. 4.6.5. We emphasize that the OPES-MetaD bias is crucial

in allowing the Vt protein to explore possible bound and unbound configurations on a

sub-microsecond timescale, and otherwise it would be impossible to observe the effect

of such small forces.

Similar biasing approaches can also be used to compute unbinding lifetimes38. In

the previous chapter, we demonstrated that the force-dependence of unbinding rate con-

stants could be captured through the infrequent Metadynamics (iMetaD) approach38,72,

including catch bonding behavior for a model system. Despite improvements to com-
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pute rates from iMetaD simulations44, iMetaD can still break down for very complex

unbinding problems, because it is difficult to prevent bias from being added during the

crossing of the transition state. For this study, we adopted the related OPES-flooding

approach (see Methods, Sec. 4.6.6), because it is possible to set a maximum amount of

bias to be added and a region outside of which bias is not added, both of which help

satisfy the assumptions underlying the kinetics calculations40.

4.4 RESULTS AND DISCUSSION

4.4.1 FESs differentiate proposed strong and weak states

The FES projected along the two directions Q∥ and Q⊥, shown in Fig. 4.4, show clear

differences between the hVt and aVt models. We compute unbinding pathways by find-

ing the minimum free energy path for unbinding using the string method 147, which are

shown on top of the two-dimensional surfaces. From the one-dimensional projections

along the strings shown in Fig. 4.4C, we see that the aVt model has approximately a 3.5

kcal/mol smaller barrier to unbinding (ΔA‡) and a 2 kcal/mol smaller free energy dif-

ference with the unbound state, meaning we would predict that it is both kinetically and

thermodynamically weaker than the hVt state. Results are quantitatively similar when

projecting another set of coordinates Q⊥ and Qcontact (Fig. 4.14). The weaker starting

state for aVt leads to a different unbinding mechanism on average, where it tends to es-

cape towards the barbed end of actin while the hVt tends to escape towards the pointed

end, which is the direction of the smaller catch bond in experiment (Fig. 4.4A,B). Over-

all, these results confirm that the model for the strong (hVt) and weak state (aVt) can
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qualitatively capture the stability of the hVt and the destabilizing effect of presence of

the folded H1 helix in aVt. These approximate one-dimensional free energy pathways

also give us a way to define when the system has crossed into the unbound state, and

the values given in the inset of Fig. 4.4C were used to inform our later kinetics calcula-

tions. Further discussion of the molecular level differences between these two states is

provided in Sec. 4.4.5.

4.4.2 FESs with applied force predict asymmetric catch bond for

strongly bound state and unidirectional catch bonding for the weakly

bound state

Having developed our protocol for computing the FES for Vt unbinding in the absence

of force, we proceeded to repeat this procedure while applying physiologically relevant

forces ranging from -30 pN to 30 pN along Q∥ as defined in Fig. 4.3B. The effect of the

applied pulling force is shown in Fig. 4.5A, where the FES is tilted in the direction of

the force for both hVt and aVt models. Typical unbound poses with force are shown in

Fig. 4.5B. While in this figure we have only shown the effect of the largest and smallest

forces, Figs. 4.15 and 4.16 shows results for all the other forces.

From the 2D FES in Fig. 4.15 and 4.16 we computed 1D FESs by finding the minimum

free energy paths as in Sec. 4.4.1 (Fig. 4.17) or by projecting onto Q∥ or Q⊥ (Fig. 4.18). In

Fig. 4.5C, the transition barriers (ΔA‡) are shown; these were extracted from the strings

computed at different applied forces in both states. These results reflect a predicted
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Figure 4.4: FES of hVt and aVt in the absence of forces. (A) FES for the Holo system (hVt) com‐
puted by 2D OPES‐MetaD biasing Q∥ and Q⊥. The string shows the minimum free energy path
on this surface going from the bound to unbound state. (B) Same as in A, for the Aligned (aVt)
system. (C) One dimensional projections of the minimum free energy paths from A and B show
that hVt is more stable and has a higher barrier to unbinding relative to aVt. The Q⊥ and Q∥ val‐
ues at the putative transition state are labeled; gray lines indicate points before the transition
state and are used subsequently to help define the excluded region in unbinding rate calculations.
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catch bond for hVt, with the barrier increasing by 4 kcal/mol for negative forces and

3 kcal/mol for positive forces. In contrast, aVt, which has a lower barrier in all but

one case, shows catch bonding in the negative pulling direction but little change in the

positive direction. The same conclusions can be reached by looking at the barriers in

the curves of A(Q⊥, F) shown in Fig. 4.18.

In summary, these results indicate that weakly and strongly bound states of Vt may

hold intrinsic catch bonding behavior, which suggests that the catch bonding behavior

may not necessarily depend only on the transition between them (see also Ref. 136).

Furthermore, this force induced increase in barrier can be attributed to steric effects

resulting from additional contacts with actin, explaining its occurrence in both weakly

and strongly bound states. Further discussion of the molecular mechanism is presented

in Sec. 4.4.5.

Finally, we note that these results are qualitative as they do not quantitatively explain

the observed experimental results, since the energy barriers increase by higher amounts

than what is realistically expected. This discrepancy could be due to the limitations

of projecting a multidimensional FE landscape onto one or two dimensions, and to a

significant change in the position dependent friction (especially in light of the steric

effects observed upon force application). Rather than only relying on our approximate

approach to compute the FES, we also wished to directly estimate the lifetimes of the

actin-Vt complex models at different applied forces.
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Figure 4.5: FES of hVt and aVt with applied forces. (A) 2D FES for Holo and Aligned as shown in
Fig. 4.4, now with applied forces along Q∥ of +/‐ 30 pN, illustrating how applied force tilts the
FES to larger or smaller values of Q∥. (B) Transition barriers ΔA‡ along minimum free energy
paths for Aligned and Holo. Holo shows an increase in barrier in both directions with force, with
a slightly larger increase for negative F, while Aligned shows an increase only for negative F. (C)
Final snapshots of unbound states produced by positive and negative pulling forces of magnitude
30 pN along Q∥.
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4.4.3 Direct computation of unbinding times predicts intrinsic catch

bonding in weak and strong states
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Figure 4.6: Lifetimes calculations for unbinding of hVt and aVt. The lifetimes of Vt unbinding were
computed using the OPES‐Flooding approach for both hVt (top) and (aVt) bottom. Both models
show asymmetric catch sensitivity to applied forces along Q∥ in this physiological force regime.
These lifetimes were obtained by fitting cumulative distribution functions as shown in Fig. 4.19
and 4.20. Error bars were computed by bootstrapping as described in Sec. 4.6.6.

The lifetime of the actin-Vt models were computed for forces ranging from −40 pN to

40 pN alongQ∥ using the OPES-flooding approach (see Sec. 4.6.6 for details). Lifetimes

in the absence of force were first computed by performing 30 biased simulations for both

models. The initial values of parameters defining when Vt is unbound and the height
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of the maximum bias were chosen based on earlier iterations of the one-dimensional

minimum free energy paths in Fig. 4.4C. These lifetime calculations proved sensitive to

the parameters ΔE, which is the maximum level of bias applied by OPES. As described

in other reported calculations 15,17,40, it’s recommended to choose a value below the ob-

served energy barrier separating the bounds and unbound states. When the maximum

bias level ΔE was above the barrier of the hVt model,ΔA‡
Holo, the predicted bond life-

times were far longer than experiment. However, preliminary simulations with ΔE near

the levels shown in Fig. 4.4C gave bond lifetimes on the same order of magnitude as

experiments. Consequently, ΔE = 12 kcal/mol was set for hVt and ΔE = 10 kcal/mol

was set for aVt; the excluded region was set at Q⊥ > 44 Åfor both models.

With these OPES-Flooding parameters, a lifetime of 2.3 ± 0.41 sec was obtained for

hVt and a lifetime of 0.13 ± 0.02 sec was obtained for aVt (Fig. 4.6). Although hVt

and especially aVt are just models for the strongly and weakly bound states, these life-

times are physically reasonable, and in particular, the lifetimes for hVt are well within

the range of lifetimes observed from experimental measurements33. Given this cor-

respondence, the choice of CVs and parameters proved to be of sufficient quality to

assess the lifetime at different forces. To compute the rates with different applied forces

along Q∥, we repeated these same calculations, performing simulations launched from

at least twenty starting points from the long equilibration trajectory at each force (see

Sec. 4.6.6). In ideal circumstances, one might want to choose different OPES-Flooding

parameters for each force; but for these simulations, we elected to use the same bias-

ing parameters for all forces. This was done both for simplicity and to avoid implicitly

selecting parameters that favored a hypothesis of how the system should behave.
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As seen in Fig. 4.6, the lifetimes at different forces for hVt and aVt both exhibit catch

bonding behavior within this force range, with longer lifetimes under applied force than

at zero force. This is in general accord with our earlier FES calculations (Fig. 4.5C), but

with less than a two-fold increase for both states. The combined results from the FES

and unbinding lifetime calculations, suggest that there is some intrinsic catch bonding

property that arises when pulling laterally on actin which may be due to the increased

interactions with actin under force (see Sec. 4.4.5). The computed lifetimes depend

asymmetrically on force, and they do suggest a stronger catch bonding effect in the

negative force direction as observed in experiment, although to a lesser degree33. At the

largest forces assessed here, the lifetimes approximate decrease back near the zero force

value, rather than exhibiting an exponential slip bonding decrease. This behavior is

compatible with the mild force-dependence observed experimentally for the supposed

weak state (i.e., at positive force in33) as well as for the artificial Holo construct of

catenin 132 missing the H1 helix (and thus analogous to the hh1Vt model in this work).

While the magnitude of the intrinsic catch bond effect we predict here is smaller

than the magnitude observed effect in experiments, intrinsic catch bonding in the strong

and/or weak state is also compatible with the model proposed wherein a dominant source

of catch bonding is the transition between strong and weak states, as discussed more in

the next section. Given our data in Fig. 4.6, the maximum catch bond that could be

obtained would be observed if pulling actin towards the pointed end completely pro-

moted a transition from a stable weak state (at 0 pN, τ ∼ 0.13 sec) to the strong (at -10

pN, τ ∼ 3.17 sec) state, which would result in a 25-fold effect; taking into account the

approximately 3:1 lifetime ratio of weak:strong state at F = 0 from the kinetic fits in Ref.
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Figure 4.7: Pulling the N‐terminal of the hh1Vt model. (A) Snapshots showing the initial configu‐
ration of our Holo+H1 system, and final configurations after pulling on the N‐terminus at±50 pN
along Q∥. Pulling the N‐term towards the pointed end (+50 pN) docks H1 along the bundle, while
pulling towards the barbed end (‐50 pN) extends H1 away from the rest of Vt. (B) Histogram of
the distance between the COM of H1 and the COM of H2‐H5 under force. The Aligned system
(gray) is shown in gray and maintains a distance close to the crystal structure (dashed line), while
pulling with positive force (blue) and negative force (orange) result in more or less association,
respectively. (C) Histogram of the number of contacts (atom pairs with distance below 5 Å) be‐
tween H1 and H2‐H5 using atoms carbon oxygen and nitrogen. (D) Histogram of the Cα RMSD
between helices H2‐H5 in Holo+H1 and H2‐H5 in 1QKR (1QKR).

33 we predict a slow-down close to the 10x catch bond effect measured experimentally

(Fig. 4.3D)33.

4.4.4 N-terminal pulling can trigger motion from hVt towards aVt

As described above, experimental unbinding lifetimes in Ref. 33 were determined by

an OT assay where the Vh domain is bound to a platform bead allowing Vt to bind to

actin held taut by two microspheres. When actin is pulled in either direction, tension

is introduced onto the actin-Vt interface via pulling on Vt’s N-terminus, close to the

region containing helix H1 in our Aligned structure. As discussed above, pulling forces
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may asymmetrically promote unbinding of the H1 helix due to pulling on its N-terminus;

therefore, we sought to test this hypothesis using our MD setup.

To do so, we employed our Holo+H1 model, which had the H1 helix grafted to our

Holo structure in a random orientation, dissociated from H2-H5, as shown in Fig. 4.7A.

To apply pulling forces, we redefined our CVs Q∥ and Q⊥ using the COM of the final

ten α-carbons of the N-terminus of Vt rather than the COM of H2-H5. We performed

five independent equilibrium MD simulations at 50pN and -50pN along Q∥ to observe

the behavior of the N-terminus.

We found that when the N-terminal of Vt is pulled towards the pointed end of actin,

H1 can be extended away from the H2-H5 bundle. As a consequence, the N− terminus

ends up forming little to no interaction with the rest of Vt (Fig. 4.7B and C); in contrast,

when pulled towards the barbed end, it closely interacts with the rest of the bundle

(Fig. 4.7B and C), forming a large fraction of the number of interactions present in

the aligned state. Noticeably, in two out of five simulations the configuration of H2-H5

spontaneously became more similar to the crystal structure of the unbound Vt, and hence

shifted towards our model of the weak binding state; this is reflected in the histogram of

RMSDs shown in Fig. 4.7D. Further enhanced sampling studies probing the transition

between the structures of the Holo and Aligned H2-H5 arrangements would be needed

to confirm this result (see Conclusions).

In summary, pulling the N-terminus of Vt towards the barbed end and actin towards

the pointed end (F < 0) disfavors the five-helical weak binding state, whereas pulling

with F > 0 either promotes or is at least commensurate with the proposed weak binding

state. Hence, these simulations thus provide evidence supporting the model proposed in
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Figure 4.8: Representative structures extracted by ShapeGMM. The structures of Vt bound to
actin are shown, with hVt in blue, aVt in red, and actin in green. The initial structure (6UPW) is
overlaid on the Holo structures after superimposing actin A3 from the MD and EM structures.
Residues in Vt and actin A3 and A5 separated by less than 3 Å are shown in VMD’s148 ‘licorice’
representation. (A,B) Representative structures from 500 ns of equilibrium MD on Holo and
Aligned systems. (C,D) Representative structures from OPES‐MetaD simulations of Holo with
and without force illustrate the primary changes induced by pulling on Vt’s COM.

Ref. 54, where forces asymmetrically contribute to the removal of H1 from the rest of Vt.

However, this does not fully explain why Vt can exhibit catch bonding behavior when

actin is pulled in either direction. In the next section, we discuss the major differences

between our Holo and Aligned models and changes induced by force.

4.4.5 Molecular Insight Into The Actin-Vt Catch-bond

In the previous section, we demonstrated that our hVt model derived from the bound

Vt structure in Ref. 53 and the aVt model derived by combining the the actin structure

in Ref. 53 with the Vt crystal structure from Ref. 145 are both stable and have unbind-
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ing lifetimes close to what would be expected from single molecule experiments. In

Fig. 4.8A and B, representative snapshots are shown (see Sec. 4.6.7 for how these were

chosen) from 500 ns of equilibrium MD for both systems; using these data we are able to

highlight some important differences between the states that contribute to the difference

in binding stability of our hVt and aVt models.

From our calculations, the hVt or putative strong binding state is on average bound

closer to the center of the actin filament, makes more contacts with actin, has more

buried surface area (BSA), and has a stronger energetic interaction association (Fig. 4.10–

4.13 and Fig. 4.21). However, when decomposing these effects into contributions from

different parts of Vt, we find that a major contribution to the number of contacts, buried

surface area, and energetic attraction in Holo comes from a disordered C-terminal exten-

sion (CTE). Moreover, these measurements are relatively similar when comparing only

the H2-H5 bundle between aVt and hVt (see Figs. 4.11 and 4.12). This is in accordance

with earlier hypotheses that the CTE may play a major role in stabilizing interactions of

Vt with actin53,54, as well as in detecting stretched states of actin53. We note that the CTE

in the aVt model stays bound on the opposite side of the bundle within the timescale of

our simulations, and as discussed in the Conclusions, separate investigations would be

needed to probe whether an intermediate aVt-like structure with an extended CTE is

stable.

Given that there are a similar number of contacts and buried surface area in H2-

H5 between aVt and hVt, we also investigated how these contacts are distributed. In

Fig. 4.22 we highlight the residues in close contact in each state in the representative

structures. Our observations suggest that the aVt model or putative weak-binding state
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involves a tilt of the bundle such that aVt’s longer H5 helix is able to take up most of

the contacts with actin; in contrast, contacts between hVt and actin in the Holo state are

more evenly distributed across H4 and H5 helices, and this may confer some additional

kinetic stability. Additionally, in the aVt model an extension of actin A3’s D-loop may

contribute to maintaining contacts with Vt.

The extensive molecular data generated by the OPES-MetaD simulations can also be

used to investigate the effect of force on the bound pose of Vt. However, OPES-MetaD

produces a biased sampling of structures, meaning that we cannot simply look at the

output configurations to infer mechanistic details. Instead, since we have already as-

cribed a biasing weight per snapshot produced from these simulations, we can use these

weights to obtain reweighted measurements (see Sec. 4.6.4, 4.6.5); these weights are

exponentially larger for low free-energy states as compared to those in the barrier or

unbound states. This allowed us to compute weighted averages of molecular quanti-

ties using the approach from Ref. 149 developed in our group, to select representative

equilibrium frames that reflect information about the bound structural ensembles.

In Fig. 4.8C and D representative structures are shown for the putative strong state

with force applied toQ∥, towards and away from actin’s barbed/pointed ends (see Sec. 4.6.7

for details). When negative force is applied, meaning that actin is pulled up and Vt down,

on average it causes Vt to rotate in such a way that more contacts are formed between

actin A5 and the bottom/middle of H4, and contacts on H5 are decreased with A5 but

maintained or increased with actin A3. At the same time, the CTE is extended, mak-

ing additional contacts with actin A3. In contrast, when force is applied in the positive

direction, it causes Vt on average to rotate in the other direction. Here, more contacts
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are formed between H4 and H5 with actin A5, but contacts with A3 appear somewhat

decreased. To make these observations more quantitative, we compute the weighted his-

togram and most probable BSA measurement as a function of applied force. As shown

in Fig. 4.21, the total BSA increases when pulling in the negative direction for hVt and

aVt, and it is basically maintained when pulling in the positive direction. We think this

is a key contributor as to why the unbinding barrier and bond lifetime are predicted

to increase when force is applied (see Figure 4.5). Furthermore, the crescent shape of

the actin binding pocket allows contacts and buried surface area to be maintained when

pulling in either direction. This shape helps explain why the unbinding rate doesn’t

increase, even when relatively large forces are applied.

4.5 CONCLUSION

To recapitulate, in this study we probed the molecular mechanism of the catch bond

between the cytoskeletal polymer actin and the vinculin tail domain using molecular

dynamics simulations. By leveraging enhanced sampling techniques, we were able to

investigate the force dependence of the barrier to unbinding and compute fore dependent

lifetimes in experimentally-relevant timescales and with pN scale physiological forces

for a large macromolecular assembly. Furthermore, this approach can be extended to

investigate the force responses in other similar systems. These results align closely with

experimental measurements, providing a molecular interpretation and offering valuable

atomistic insights for these measurements. These findings can guide future mutational

studies to further explore the catch bonding mechanism involved in mechanotransduc-
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tion.

More specifically, we interrogated a three-state catch bond model, consisting of an

unbound state, a weakly bound state and a strongly bound state (also referred to as the

two-bound state catch bond model23,57). By running long equilibrium MD simulations,

we established that both our models of the strongly-bound (built from the CryoEM struc-

ture of Vt bound to actin with an unresolved H1 region) and weakly-bound (built from a

complete, isolated Vt structure) states were stable. Then, extensive enhanced sampling

simulations were used to show that these models have binding lifetimes compatible with

that predicted from single molecule studies. Our results indicate that for forces around

10-20 pN it is possible for either the strongly or weakly bound structures to shift into con-

figurations that take longer to unbind than at zero force (see also, e.g., Ref. 136). However,

the magnitude of the effect is not as large as what was observed in experiment, suggest-

ing that the mechanism of catch bonding may be derived from a combination of intrinsic

catch bonding with the previously proposed three-state model of Vt’s catch bond, which

involves allosteric regulation of binding affinity by the H1 helix. This puts a focus on

whether pulling on the H1 helix gives a directional dependence to the catch bonding be-

havior, as pulling in the direction of the strong catch bond moves H1 away from Vt. Our

MD simulations support this hypothesis, but further enhanced sampling simulations

probing the free energetic barrier to transition between the weak and strongly bound

configuration of H2-H5 while bound to actin at different forces would be important to

further confirm this mechanism.

There are still inherent limitations to our approach. For example, the aVt model was

obtained from aligning the crystal structure of Vt in solution to the actin bound Vt struc-
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ture. This actin-aVt complex has not been observed in experiments. Consequently, the

relative weakness of the bound aVt structure could be attributed to an unstable bound

pose due to artifacts generated by simple alignment. However, we are somewhat com-

forted by the stability of the model observed in our 500 ns long simulations and in pulling

simulations (not reported here) where large forces (F > 100pN were applied without en-

hanced sampling and unbinding did not occur. In our kinetics simulations, at relatively

high forces (> 30 pN), our calculations predict lifetimes similar to zero force, whereas

experimental measurements did not probe these large forces but suggested a transition

into a slip regime. This might be a consequence of the direction of pulling and how we

performed the pulling; namely, pulling the COM of Vt directly parallel to the actin fila-

ment which drags Vt into direct steric contact with parts of the binding concave surface

in actin, and we often observe that Vt has to slide perpendicular to the filament (in and

out of our diagrams) as it unbinds. The manner with which the SM experiments were

performed, in which Vt is attached to a surface via linkers attached to its N-terminus,

and how actin was suspended between beads, may induce angular forces on Vt and some

tension may exist in other directions other than in the parallel direction. These aspects

of the experiment should be incorporated in future investigations.

The apparent increase in barrier with applied force from our FES calculations is larger

than what would be expected from experiments, and larger than what we would predict

with our kinetics calculations. Our current understanding is that the kinetics calculations

may more accurately reflect reality, since our FES calculations (a) were approximately

computed from many short OPES-MetaD simulations and (b) inferring kinetic infor-

mation from those data involved looking at a 1-dimensional reaction coordinate, which
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could have a misleading barrier height as compared to the true barrier along some ideal

reaction coordinate. Moreover, solely observing the barrier along our 1-d free energy

surfaces does not take into account that there could be multiple reaction pathways, and

that the diffusion constant along the reaction path might change with force. We would

like to investigate this discrepancy in the future by considering previously proposed

mutations that modify the Vt unbinding lifetime and also by considering an analogous

protein like α-catenin to provide additional insight into the performance of our methods.

Finally, in the future, we would like to try alternative approaches to compute the

minimum free energy pathway for unbinding; for example, the existing extensive data

could be a good starting point for performing variations of the string method in high

dimensional space 150. We can also use the large amount of unbinding trajectories we

have generated to produce machine learned reaction coordinates that could describe

the unbinding mechanism better, and therefore lead to better FES and rate calculations,

as well as additional insight into the true unbinding pathways 151,152. Additionally, we

have not yet considered an intermediate structure between our Aligned and Holo model,

which would consist of a five-helix bundle but with its CTE bound to actin, and it would

be intriguing to investigate whether this is a stable structure and if it plays any role in

the overall mechanism.

4.6 METHODS

Below we describe preparation of our models, MD simulation details, and enhanced

sampling methods. Structures inputs and simulation parameter files, analysis code, and
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equilibrated system structure files are available in the repository hosted at https://

github.com/hocky-research-group/Pena-Vinculin-Unbinding.

4.6.1 System Preparation and Nomenclature

The structure 6UPW53 consists of five actin subunits A1-A5 and two bound (meta)Vinculin

tail domains53. An initial template system was prepared by removing the Vt bound be-

tween actin subunits A1 and A3 in 6UPW, leaving one Vt bound between A3 and A5.

Missing residues (1-4, 375) in actin subunits were included using VMD’s psfgen func-

tion 148. Actin subunits contain an ADP, Mg2+ ion, and water 153. This structure was used

as a starting point to build all models.

The actin-hVt complex model was constructed by solvating the reference structure

with TIP3P water, and then 50 mM of NaCl was added to mimic physiological conditions

and to neutralize the complex. The hVt protein in this system consists of four helices

(H2-H5 bundle) and a CTE tail; hVt has residue ids: 981-1131 (151 residues).

The actin-aVt complex was constructed by first aligning the H2-H5 Cα atoms in

Ref. 145 to the Cα atoms in the H2-H5 bundle of Vt in the reference structure (hVt) with

UCSF Chimera’s matchmaker program 154. The resulting structure was later solvated

and ionized as in actin-hVt; aVt has residue ids: 882-1061 (180 residues), residue ids are

offset by 68 since the hVt model is derived from metaVt.

The actin-Holo+H1 model was built by positioning the H1 helix of aVt near H2 of hVt

and a bond was created manually between the last H1 residue and the first H2 residue

with Chimera, followed by solvation and addition of ions as before. The hh1Vt protein

consists of five helices, H1-H5 with H2-H5 in a bundle and a CTE tail, and H1 detached
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from the four-helix bundle; hh1Vt has residue ids: H1 882-912, and H2-H5+CTE 981-1131

(182 total residues, the CTE in hVt has 2 more residues than aVt).

We initially used a minimum padding of 1.2 nm of water in all directions, and these

models with a larger box size were used for the FES calculations. After determining that

a smaller box was sufficient to observe unbinding, we created smaller versions of the

same models with a 1 nm minimum padding, which allowed us to perform our kinetics

calculations more efficiently.

4.6.2 Simulation Details

Minimization and equilibration simulations were performed in GROMACS-2023 111, and

all production simulations as well as post-processing were performed with GROMACS-

2023 patched with PLUMED versions 2.8 and 2.971. The CHARMM36 155 force field

was used for all the bonded and nonbonded parameters of proteins.

Equilibration was performed in a manner similar to Ref. 156. For FES calculations un-

der mechanical load, 20 independent minimization and equilibrations were performed.

Configurations were minimized with the steepest descent algorithm for 5000 steps with

dt =1 fs followed by a 5 ns constant-volume and temperature (NVT) equilibration stage

(2 fs timestep) where A1, A4 and Vt components had position restraints of force con-

stants 1000 kJ/(mol nm2) on backbone heavy atoms to allow the solvent and other com-

ponents to relax. Furthermore, protein and solvent atoms were coupled separately to a

300K temperature bath using GROMACS’s V-rescale thermostat. This was followed by

a 5 ns equilibration (2 fs timestep) at constant temperature, a constant pressure (NPT)

using GROMACS’s C-rescale barostat with 1.0 bar reference pressure with position re-
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straints on Vt still on. An additional 5 ns NPT equilibration using the Nose-Hoover

thermostat was performed with restraints on and a final 5 ns NPT equilibration was car-

ried out this time using GROMACS’s Parinello-Rahman barostat without restraints on

Vt. For productions runs, positions restraints were kept on for A1 and A4, which main-

tained restraints on the backbone heavy atoms using a force constant of 1000 kJ/(mol

nm2).

For the 500 ns long equilibration runs, we followed the same steps as above for initial

equilibration but kept the V-rescale thermostat and the Parinello-Rahman barostat com-

bination for the long 500 ns run. For rate calculations, starting configurations were ex-

tracted from the latter half of the 500 ns trajectory for each model and each configuration

was equilibrated for 5 ns under NPT using the V-rescale thermostat and C-rescale baro-

stat with restraints on Vt and 5 additional ns under NPT using the Parrinello-Rahman

barostat and without restraints on Vt. Resulting structures were used in production runs

under NPT.

For all equilibration and production runs, long-range electrostatics were calculated

using the Particle Mesh Ewald (PME) algorithm with the cut-off for short-range non-

bonded interactions at 1.2 nm. Bonds between hydrogen and heavy atoms were con-

strained using the LINCS algorithm. Finally, the equations of motion were integrated

every 2 fs using the Velocity-Verlet algorithm (see Sec. 4.6, Fig. 4.9).

4.6.3 Key Collective Variables

To characterize the motion of Vt relative to actin, we used PLUMED71 to define the two

vectors shown in Fig. 4.3B: one pointing from the center of A1 and A2 to the center of
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A3 and A4 (⃗v12) and one pointing from the center of actins A1 and A2 to Vt (⃗v13). After

defining these vectors, Q∥ is defined as the scalar projection of v⃗13 along v⃗12 and Q⊥ is

defined as the length of the perpendicular component of v⃗13 relative to v⃗12.

Q∥ =
v⃗1 · v⃗2
∥⃗v2∥

(4.1)

Q⊥ =
√
∥⃗v1∥2 − Q2

∥ (4.2)

Although large values of Q⊥ correspond to unbound poses of Vt, we also monitor the

unbinding process through computing the fraction of key contacts maintained between

H4 and H5 of Vt and A3 and A5 (Qcontact). In this work, we define Qcontact in a similar

manner as in Ref. 157; Qcontact is the sum of fractional contacts, Qij, between key selected

pairs of atoms where the Qij for each distance is computed as:

Qij(rij) =
Wij

1+ eβ(rij−λr0ij)
(4.3)

where λ is 1.8, β is 5.0 Å−1, r0 is 4.0 Å, r is the distance i at time t, and Wij is the weight

for Qij which is defined to be the constant 1/Npairs. Atom pairs are specified in Tab. 4.2

in the SI.

4.6.4 The OPES-MetaD method

The on-the-fly probability enhanced sampling metadynamics (OPES-MetaD) method 15

was used to rapidly explore configurations of Vt relative to actin using the aforemen-
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tioned CVs. This method is similar to metadynamics64 however OPES-MetaD com-

putes the bias from the ratio of a target probability distribution to the reweighted prob-

ability distribution of the chosen CVs (see the OPES section in the methods chapter for

more details 2.5). The bias on CVs s has the form:

Vn(Q⃗) = (1− γ−1)
1
β
log
(
P̃n(Q⃗)
Zn

+ ε

)
(4.4)

As stated in previous sections, OPES-MetaD also allows us to define an excluded region

outside of which the bias goes to zero, which we use in our computation of binding

lifetimes.

4.6.5 Computing the FES for Vt unbinding with OPES

In general, it is difficult to compute an unbinding FES even when using a biasing scheme

such as OPES-MetaD because of the need to fully explore and observe many transitions

between the bound and unbound state 108,109. Therefore, to compute an approximate FES

that captures the bound state and transition to the barrier, we first ran 20 separate OPES-

MetaD simulations for 100 ns with harmonic upper walls at Q⊥ > 52, Q∥ > 80 Å and a

harmonic lower wall on Q∥ < 57 Å(positions taken from initial equilibration runs). The

spring constant for the wall potentials was set to 1000 kcal/mol/Å in all cases. For FES

calculations in the absence of force, we set ΔE to 25 kcal/mol, and then for those under

load, we set ΔE to 20 kcal/mol. We then combined these independent sets of data using

WHAM (as implemented in PLUMED71 tutorials) to combine the final quasi-static bias

from each different simulation to produce a FES estimate along the two biased CVs for
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the unbinding of the both the hVt and aVt models (Fig. 4.4A,B at zero force and Fig. 4.5,

4.15, and 4.16 with applied forces). To apply WHAM analysis, we used PLUMED to

recompute what the bias would have been in trajectory i if we had used the OPES bias

from simulation j as in umbrella sampling simulations. Then, the minimum free energy

path (MEP) on each surface was computed by running the string method 147 on a surface

obtained by interpolating the FES with a spline function from the SciPy library 158. A

total of 25 nodes were used to define the string with the initial node at Q∥ = 69 Åand

Q⊥ = 39 Åfor hVt and Q∥ = 72 Åand Q⊥ = 40 Åfor aVt. The last node was set at

Q∥ = 72 Åand Q⊥ = 46 Åfor hVt and at Q∥ = 70 Åand Q⊥ = 46 for aVt. This process

allowed us to define a predicted barrier height and to define Q⊥ values beyond which

we consider Vt to be unbound (Fig. 4.4C). We also projected these CVs into the space

of Q⊥ and Qcontact which allowed us to confirm the unbinding of Vt (Fig. 4.14).

4.6.6 Rates of Vt unbinding with OPES-flooding

The average lifetime for unbinding was computed using the OPES-flooding approach40.

Based on the earlier InfrMetaD 38 and hyperdynamics68 approaches, OPES-flooding as-

sumes that the process to be studied is a rare event characterized by a large free energy

barrier. It then seeks to apply a biasing potential only in the starting state without ap-

plying bias to the system as it crosses the transition region. In this case, the speedup or

acceleration factor for simulation i can be computed as αi ≈ ⟨eβVi(s)⟩, where the average

is taken over the trajectory up to the point where the event occurs, ti. To compute the

average unbinding time τ, the same protocol as in InfrMetad was followed where the

cumulative distribution function of the collected rescaled unbinding times (tiscl = αiti)
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is fitted to an exponential distribution40,70,

CDF(T) = 1− e−tscl/τ (4.5)

The goodness of fits were assessed by a Kolmogorov-Smirnov (KS) test70. Error bars

were computed via bootstrapping, where 200 sets of the same number of biased trajec-

tories were selected with replacement, the CDF fit was performed each bootstrap, and

then the standard deviation of fit τ values were computed 159.

As stated in the Results section, we used ΔE = 12 kcal/mol for hVt and ΔE = 10

for aVt; all other parameters are computed internally based on the value of ΔE 15. The

excluded region was set to be at values of Q⊥ > 44 Åand we set the unbound state at

Q⊥ > 46. Finally, we performed 30 OPES-flooding simulations at zero force and 20 for

all other forces for each model until Vt was determined to unbind (using PLUMED’s

COMMITTOR function which stops the simulation once the set basin is reached). CDF

fits passed the KS goodness of fit test in all cases, suggesting we have a reasonable

choice of CVs and excluded region for this setup (see Fig. 4.19 and 4.20.

4.6.7 Choosing representative configurations

Representative structures shown in Fig. 4.8, were extracted from the long equilibrium

MD simulations using the ShapeGMMtorch package from Refs. 160,161. The Vt struc-

ture was iteratively aligned, using all backbone atoms, to a mean structure taking into

account the covariance of positions using the “Kronecker form” of the covariance ma-

trix described in Ref. 160. This approach naturally favors the regions of Vt that are
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less floppy. The procedure yielded a single multivariate Gaussian in Cartesian position

space, and we then selected the frame from the MD trajectories that had the highest like-

lihood in this distribution (having the minimum Mahalanobis distance from the mean).

This approach was recently extended to obtain structures from MetaD/OPES simu-

lations 149, meaning that we can take into account the weights of each frame in biased

simulations and fit an equilibrium ShapeGMM model. To extract the structures shown

in Fig. 4.8B, the same iterative alignment procedure was performed using Cα atoms of

Vt, with weights of each frame given by wi = eβV(s(ti)), where s represents the position

in Q∥ and Q⊥. This was performed for each OPES-MetaD trajectory at F = ±20 pN

separately (so that relative weights did not have to be determined), to obtain represen-

tative frames for each run, and then the ones with the highest likelihood were selected

manually for each force.

4.7 SUPPLEMENTAL INFORMATION AND RESULTS

4.7.1 the three state catch-bond kinetic model

The following describes the two-bound (three state) catch bond model from Ref. 33

(parameters in Tab. 4.1) which was used to fit the experimental data for Vt unbinding,

and was used to produce the curve in Fig. 4.3D.

It was assumed that each individual transition from one state to another is described

by a modified Bell’s model 45:

kij(F) = k0ije
F xij/(kBT) (4.6)
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Table 4.1: Two‐bound state catch bond. Parameters for a catch bond model for Vt unbinding,
taken from Ref. 33.

rate k0ij (s−1) xij xij
k10 3.9 0 0.5
k20 0.045 0.3 0.7
k12 2.7 0 0
k21 8.3 -3.8 -2.8

where k0ij is the transition rate from state i to state j in the absence of force and xij is

the distance of the transition state from state i. In state 1, Vt is weakly bound and in

state 2 Vt is strongly bound. Vt transitions between states 1 and state 2 with rates k12

and k21, respectively. The rate k12 corresponds to a slip pathway (x12 > 0) while rate k21

corresponds to a catch pathway (x21 < 0). In state 0, Vt is in the unbound state which

can be reached from state 1 with rate k10 or from state 2 with rate k20, xij is positive in

both cases.

As stated in Chapter 1, the survival function for the two-bound (three state) catch-bond

model is given by the double exponential:

BF(t) = C1e−λ1t + C2e−λ2t (4.7)

The parameters Ci and λi above are defined in Section 1.4 of Chapter 1.

Although generally unbinding events under load are well described by Bell’s model

where the unbinding rate increases with increasing force (x12 > 0), for the unbinding

of Vt from actin, the proposed mechanism in Ref. 33 is that the rate of transition from

the strongly bound state to the weakly bound state decreases under load (x21 < 0) when

pulling actin towards either direction and thus the overall unbinding rate, koff, decreases
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with increasing load, although more significantly when pulling actin’s negative end,

explaining the asymmetric catch-bond.

4.7.2 Buried Surface Area calculations

The buried surface area (BSA) is an important measure of protein-protein interaction

strength and stability 162. The BSA measures the area of the protein surface, actin for

instance, that becomes hidden or inaccessible by a solvent when a second protein, like

Vt, binds to it 162. Therefore, the greater the BSA the stronger the interaction. The BSA

can be obtained from measurements of the solvent accessible surface area (SASA) of

the two interacting proteins with the following 154,162:

BSA =
1
2(SASAa + SASAb − SASAab) (4.8)

where a, b, and ab denote the SASA of A3-A5, Vt, and A3-A5_Vt respectively. In this

work, SASA’s were obtained from trajectories with GROMACS’ sasa program 111.
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4.7.3 Additional Results and Figures

Actin hVt aVt
A3-ASN-92-O ARG-1107-NE ARG-1039-NE
A3-ASN-92-O ARG-1107-NH2 ARG-1039-NH2
A3-GLY-46-O GLU-1054-OE1 GLU-986-OE1
A3-GLY-46-O THR-1058-OG1 THR-990-OG1
A3-GLY-48-O ARG-1055-NH1 ARG-987-NH1
A3-LYS-50-NZ GLU-1104-OE2 GLU-1036-OE2
A3-LYS-50-NZ GLU-1108-OE1 GLU-1040-OE1
A3-LYS-50-NZ GLU-1108-OE2 GLU-1040-OE2
A3-MET-47-O ARG-1055-NH1 ARG-987-NH1
A3-VAL-45-O THR-1058-OG1 THR-990-OG1
A5-ARG-147-O GLN-1062-NE2 GLN-994-NE2
A5-GLY-146-N GLN-1062-OE1 GLN-994-OE1
A5-GLY-146-O ASN-1094-ND2 ASN-1026-ND2

A5-THR-148-OG1 ASN-1097-ND2 ASN-1029-ND2
A5-THR-351-OG1 THR-1058-OG1 THR-990-OG1
A5-TYR-143-N GLN-1062-OE1 GLN-994-OE1

Table 4.2: Atom pairs used to define Qcontact. Residue numbering is based on original residue
numbers in the PDB structures of hVT but they refere to the same residues in both hVt and aVt.
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Figure 4.9: RMSD, IE, BSA of the four‐helix bundle. Time series include only heavy atoms from
the H2‐H5 bundle. (A) RMSD with respect to the first frame of the trajectory. (B) Short range
interaction energy between Vt and A3‐A5 subunits. (C) Buried surface area (BSA) between Vt and
A3‐A5 subunits
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Figure 4.10: RMSD, IE, BSA of the four‐helix bundle and CTE. Time series include heavy atoms
from the H2‐H5 bundle and the CTE. (A) RMSD with respect to the first frame of the trajectory.
(B) Short range interaction energy between Vt and A3‐A5 subunits. (C) Buried surface area (BSA)
between Vt and A3‐A5 subunits
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Figure 4.11: Number of contacts, Qcontact measurements. (A) The total number of contacts (CN)
between A3A5 and Vt+CTE vs time. (B) Qcontact Vs. time, which is only based on distances from
residues of the H4‐H5 helices to the A3/A5 interface.
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Figure 4.12: CN with and without CTE. (A) Distribution of the total number of contacts between
H2‐H5+CTE and the A3/A5 interface. (B) Distribution of CN without CTE.
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Figure 4.13: CV distributions by KDE. Distribution of CV’s including Dcom. which is the distance
from the COM of Vt to the COM of A3/A5
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Figure 4.14: FES vs. Qcontact and Q⊥ in the absence of force. (A,B) FES for the Holo and Aligned
models as a function of Qcontact and Q⊥. (C) One dimensional projections of the minimum free
energy paths from A and B show that Holo is more stable and has a higher barrier to unbinding
relative to Aligned. As in Fig. 4.4 The Q⊥ and Qcontact values at the putative transition state are
labeled, which are used subsequently to help define the excluded region in unbinding rate calcu‐
lations.
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hVt

Figure 4.15: FES for hVt at various pulling forces. Forces were applied in both directions
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aVt

Figure 4.16: FES for aVt at various pulling forces. Forces were applied in both directions
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Figure 4.17: Minimum free energy paths for Vt unbinding at different forces in either direction
computed by the string method on the 2D FESs in Fig. 4.15 and 4.16.
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Figure 4.18: One dimensional projections of the 2D FESs in Fig. 4.15 and 4.16 at different forces
onto individual CVs. Forces are indicated by the color bar, with the dashed line showing F = 0.
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Figure 4.19: CDF fits for hVt unbinding lifetimes. Cumulative distribution functions of rescaled
times from OPES‐Flooding simulations, corresponding to the lifetimes in Fig. 4.6. The exponential
distribution (TCDF) is the best fit to the data. All fits pass the KS test with a p‐value> 0.05. The
number of runs that reached an unbound state and the total number of runs performed for each
condition is given in the caption.
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Figure 4.20: CDF fits for aVt unbinding lifetimes. Cumulative distribution functions of rescaled
times from OPES‐Flooding simulations, corresponding to the lifetimes in Fig. 4.6. The exponential
distribution (TCDF) is the best fit to the data. All fits pass the KS test with a p‐value> 0.05. The
number of runs that reached an unbound state and the total number of runs performed for each
condition is given in the caption.
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B

C

A

Figure 4.21: Reweighted KDE distributions for BSA measurements in pulling simulations.
Weighted probability distribution of buried surface areas (BSA) for hVt (A) and aVt (B) obtained
from FES simulations. BSA’s were computed from SASA’s of heavy atoms of hVt and aVt (includ‐
ing CTE tail) and heavy atoms of actins A3‐A5. (C) Peak BSA’s at each pulling force for hVt and
aVt. The BSA’s for aVt are lower than for hVt for all scenarios, and BSA’s increase when Vt moves
towards the barbed end of actin and remain the same or decrease when Vt moves towards the
pointed end.
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Figure 4.22: Representative hVt and aVt structures from Fig. 4.8. Here, atoms in contact with
actin are highlighted in silver. The aVt model has a similar amount of contacts and buried surface
area on helices H2‐H5 with actin, but they are primarily localized to H4.
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CHAPTER 5

CONCLUSIONS
Investigating the mechanisms by which proteins respond to mechanical force is chal-

lenging. The inclusion of external forces is usually aimed at obtaining abstract coor-

dinates for an initial guess of transition trajectories such as the activation pathway of

the Arp2/3 complex or the phosphate release pathway from filamentous actin 163,164,165.

However, these forces are significantly larger than would be observed in physiological

conditions62,91.

In this thesis, we aimed to capture the effect of pN scale forces by assuming that

the collective action of these forces can be modeled by a constant pulling force. In our

simulations, this assumption was reasonable as we were able to observe how unbind-

ing changed as a function of force. Yet, there are a few outstanding questions: How

should we optimally apply forces to large assemblies such as filaments or multi-protein

complexes to accurately mimic experimental or in vivo conditions? In the case of mo-

tor generated forces or shear induced forces, this assumption may not hold. Moreover,

when setting up simulations to mimic experimental methods to better compare results,

what level of detail is needed to more accurately mimic experimental setups?

Since we do not expect these pN forces to activate the mechanosensitive properties of

the models with regular MD, we rely on CV based enhanced sampling methods to ensure

that relevant regions of phase space are sampled. However, the effectiveness of these
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methods depends heavily on the choice of CVs. Typically, CVs are chosen via intuition

but ideally through a more rigorous process such as machine-learning based methods,

although these could be limited to smaller systems and may need to be adapted for

larger assemblies. Instead, one or two candidate CVs are chosen and assessed based on

how well they identify bound and unbound states, and relevant intermediates metastable

states; several iterations may be needed until settling on a reasonable set of CVs. In

some cases, as in large multiprotein complexes, a converged FES is extremely difficult

to obtain but good enough estimates can still provide useful information such as the

barrier separating the bound state from a putative unbound state 166.

Kinetic rates obtained from these methods may either overestimate or underestimate

the timescales of the lifetimes 167. To reiterate, the role of the chosen CVs is important

here since biasing bad CVs will not help the system escape local minima as well as other

more appropriate CVs, and as a result the unbinding rate will be overestimated. On the

other hand, the frequency with which a bias is deposited is important; in some cases if

biases are deposited before the system is allowed to relax in between depositions, the

transition might happen too fast resulting in an underestimated rate.

Nevertheless, the results presented in this thesis evidence a reasonable approach by

which the mechanism of force dependent kinetics can be elucidated for similar bio-

logical macromolecules. We first showed that enhanced sampling methods such as In-

frMetad can be used to study the force dependent kinetics of receptor-ligand models and

how they can break down. Then, we focused on a multiprotein complex, actin-vinculin,

which is thought to follow kinetics described by the two-bound catch bond model (three-

state model). We were able to differentiate between the strongly and weakly bound
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states based on FESs and showed that both states have an intrinsic catch-bond. We then

provided a molecular description as to why one state is more strongly bound than the

other and why, in either state, these interactions are force-enhanced more in one di-

rection than the other. Lastly, these results suggest that the catch-bonding behavior of

the actin-vinculin may originate from a combination of force enhanced interactions and

promotion of transitions between states due to a mechanical load.

5.1 FUTURE WORK

In Chapter 4 we excluded from our unbinding simulations a possibly important aspect of

the catch-bond between actin and vinculin; namely, the transition from weak to strong

state and vice versa. However, it’s not readily apparent what CVs can be used to dif-

ferentiate one state from the other. Therefore, a more rigorous approach needs to be

implemented to find appropriate CVs that more closely capture this transition. We ex-

pect to use a mixture of machine-learning based methods such as Deep-LDA or Deep-

TICA 168 and enhanced sampling methods. This task could prove to be challenging as

the transitions need to occur while bound to actin; nevertheless, the existing unbinding

trajectories of each state could be helpful and used as training data. One key difference

between the strong (hVt) and weak state (aVt) is the interaction of the CTE with actin.

The CTE of hVt is extended and interacts with A3, whereas the CTE of aVt is bent, close

to the four-helix bundle. There are hypotheses that CTE stabilizes the interactions of Vt

with actin53,54. Thus, we would like to build models of hVt without the CTE and aVt

with extended CTE to measure rates and determine how these change or if they remain

unaffected when compared to the previous models.
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