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Abstract

This thesis aims to comprehend the physics underlying self-organization phenomena in di-

verse soft matter systems, spanning materials and biology. The systems under scrutiny exhibit

binders (or "active" binding sites) with dynamic interactions leading to aggregation. Our study

investigates the dynamics of binder adhesion, utilizing Coarse-GrainedMolecular Dynamics sim-

ulations. A pivotal component of our simulation platform is a dynamic binding and unbind-

ing model, implemented as an open-source custom plugin to HOOMD-blue. This model allows

stochastic binding and unbinding of particles, with optional temperature-dependent rates to cap-

ture cooperative melting. Through this approach, we strive to provide insights into the self-

aggregation mechanisms in soft matter systems with binders, connecting materials and biolog-

ical sciences. First, we study the self-assembly of colloidal particles with explicit mobile binding

molecules, such as DNA-coated emulsion droplets, that allows for spontaneous valence control

by tuning parameters such as the interaction strength between the particles and the concentra-

tion of the binders. This valence control can be used to optimize the yield of droplet polymer

chains called colloidomers, and our coarse-grained MD simulation model can further guide pro-

grammable design in experiments such as folding of colloidomer chains. Next, we explore the

dynamics involved in the formation of adhesion patches between these droplets. Additionally,

we examine how adjusting the molecular features of the system can influence the growth and

shape of the adhesion patch. Subsequently, our investigation delves into the formation of both

equilibrium and kinetically arrested gels originating from ligated nanoparticles and macromers
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featuring distinct functionalities. These functionalities involve dynamic binding and unbinding,

and our coarse-grained simulation platform allows us to gain insights into the impact of binding

and unbinding kinetics in the design of such assemblies. Finally, we also establish an in silico

model for a synthetic LLPS phase separation system called "synDrops" to study how the active,

crowded cellular environment affects biomolecular condensate formation.
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Chapter 1

Introduction

1.1 Motivation

Macroscopic properties of materials rely on the strength of intermolecular interactions [1, 2]

and length scales. A gas condenses into liquid as intermolecular forces prevail over thermal mo-

tion. Further cooling yields a solid, with molecules fixed in definite locations. Liquids [3], held by

intermolecular forces, exhibit fluidity, contrary to the indefinite shape of solids [4]. This interplay

of attractive forces and thermal motion yields varied mechanical properties. Liquids flow (irre-

versible deformation) [3, 5–7], whereas solids exhibit elastic behavior (reversible deformation)

under shear forces [4–7].

But what happens in a scenario where the distinction between solid and liquid becomes

blurred? An interesting class of materials with mechanical properties intermediate between the

two emerges! Soft materials [8–11] encompass a class of materials known for their flexibility,

deformability, and low mechanical stiffness. They can readily undergo deformation in response

to thermal or mechanical stresses, typically on the scale of thermal fluctuations. This category

includes a wide range of materials, such as polymers, colloids, surfactants, foams, granular ma-
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terials [12, 13], liquid crystals [14], gels, tissues, and biological/active materials e.g. bacteria [15,

16], active colloidal swimmers [17–19] and microtubules [20, 21] inside the cytoplasm of eukary-

otic cells (which have a vital role in genomic organization). Everyday items, including various

food products like mayonnaise, chocolate, and jelly are representative of soft materials.

The physical quantity that can predict how ‘hard’ or ‘soft’ a material is its shear modulus,

obtained from rheological [5, 7] measurements. In contrast to traditional hard materials like met-

als and ceramics, soft materials can undergo significant deformations without breaking or losing

their structural integrity. They retain their form temporarily, behaving similar to elastic solids,

yet with the passage of time, they behave like fluids [8, 9, 11]. This dual nature of momentarily

appearing as elastic solids and eventually exhibiting the properties of viscous liquids results in

them being labeled as viscoelastic materials [22]. One common feature in all these materials is

that they are composed of units at the mesoscopic length scale [23].

Building blocks of soft materials experience intermolecular forces [1, 2, 8, 9] similar to atoms

ormolecules, with their strength and scale influenced by particle size and the surroundingmedium.

These include electrostatic interactions [24], polarization forces [2, 25], and quantummechanical

forces (such as covalent bonds [26–28], hydrogen bonds [29, 30], and charge transfer interactions

[31]). Additionally, soft materials involve other interactions like depletion [32–35] and hydropho-

bic forces [36].

What constitutes the motivation for exploring the properties and self-aggregation behavior

of this very interesting class of systems known as soft materials? Such materials have very in-

triguing properties, and invite us to explore a field where flexibility and responsiveness [8, 9]

transcends being just a mere attribute, evolving into a strategically harnessed advantage. Draw-

ing inspiration from biological tissues and cells [37], soft materials serve as a key source of insight

into the complexities of living organisms [8]. This exploration finds its use in biomimetics [38–

40] and tissue engineering [41], offering a deeper understanding of how soft materials interact.

Soft materials play a pivotal role in the field of manufacturing — particularly in shaping flexible
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electronics, wearable devices, and soft robotics [42, 43] (due to their adaptability); as well as in

consumer products — ranging from clothing to packaging to personal care items. The signifi-

cance of soft materials extends into medical applications, influencing drug delivery systems and

implantable devices. The responsiveness of soft materials to external stimuli, such as temper-

ature, or light, paves the way for the design of smart materials [44–47] capable of adapting to

changing conditions, such as in sensors. Understanding the aggregation behavior of soft materi-

als can also contribute to design of energy-efficient, recyclable, and eco-friendly materials which

can promote environmental sustainability.

Soft materials are interesting systems to probe for gaining an understanding of the intricate

world of structural arrangements at the molecular and nano-scale. Exploring these materials

provides valuable insights into the interplay of forces, energy dissipation, and deformation, con-

tributing significantly to our understanding of rheology [5, 7]. Moreover, the study of soft mate-

rials sheds light on the underlying physics of phase transitions and critical phenomena [48, 49]

within these systems, enhancing our broader comprehension of fundamental physics principles.

This knowledge extends beyond commercial applications, laying the groundwork for innovations

in fields such as materials science and biophysics. In this thesis, I have outlined an in-depth study

of the self-assembly phenomena in soft matter systems with a diverse range of properties, using

computational simulations that involve coarse-grained modeling [50, 51].

1.2 Self-Assembly: a Brief Overview

Self-assembly is defined as a natural process where individual components spontaneously

come together to form an organized structure or pattern due to specific interactions among the

components [52]. The range of scales on which self-assembly occurs is vast: here, we primarily

focus on assembly of components that range in size from a few angstroms (such as atoms and

molecules) to a few micrometers (such as colloids) [53, 54]. This phenomenon can be used to de-
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sign nanomaterials [55, 56] such as metals, alloys, and semiconductors, as well as supramolecular

and biological materials. The driving force for self-organization phenomena range from multi-

ple non-covalent interactions, such as hydrogen bonding, electrostatic association, and van der

Waals forces, and hydrophobic interactions [57]. Self-assembly has indispensable applications in

fields such as engineering of bio-inspired materials, drug delivery and pharmaceuticals. It can

also be harnessed in the design of dynamic and self-healing [58, 59] materials.

This process has been particularly relevant in the synthesis of functional biomaterials [60] at

mimic the natural extracellular environment and provide biological signals to guide cell behavior.

Self-assembled biomaterials [61, 62] often incorporate at least one biological component to guide

assembly. Prominent examples of self-assembly in materials science include the formation of

molecular crystals [63, 64], colloidal aggregates [65–67], lipid bilayers [68–70], phase-separated

polymers [71], etc., and there exists a vast reserve of literature on each of them. In this thesis,

we mostly focus on non-driven systems [72] that do not receive any external energy and inactive

components driven solely by thermal fluctuations from the solvent, and having a diffusive motion

not involving any energy consumption.

1.3 Dynamic Bonds in Self-Assembly

Self-assembly is broadly classified into two types — static and dynamic [52, 54, 57, 73, 74].

Static self-assembly leads to the formation of thermodynamically stable structures, achieving

rapid equilibrium with limited possibilities of spontaneous rearrangements [52, 54, 57]. In con-

trast, dynamic self-assembly is characterized by reversible processes, involving continual asso-

ciation and dissociation, thereby permitting the system to dynamically explore various configu-

rations over time. The thermodynamics of dynamic self-assembly are complicated, and involve

both enthalpy and entropy considerations within a non-equilibrium framework. Dynamic self-

assembly can provide flexibility and responsiveness [28] to the self-assembled structures, unlike
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static assembly.

Dynamic bonds are instrumental in both assembly and disassembly of supramolecular struc-

tures [75]. These bonds, whether they are dynamic covalent or non-covalent interactions [28],

exhibit reversibility — they can form or break in response to external stimuli. This inherent

reversibility enables self-assembled structures to dynamically adapt and undergo alterations in

reaction to different external conditions. Within self-assembling materials, dynamic bonds facil-

itate rearrangements, leading to the creation of adaptive (reconfigurable) structures [28, 76, 77].

This proves essential in applications such as drug delivery, nanotechnology, and the design of

responsive materials [77] characterized by high fidelity.

Dynamic bonds can be classified into two broad categories — dynamic supramolecular, non-

covalent interactions, and dynamic covalent bonds (DCBs) [28]. The former are relatively weaker

as compared to DCBs and include hydrogen bonds, metal-ligand coordination bonds [78, 79], 𝜋-𝜋

stacking [80, 81], and host-guest interactions [82, 83]. Dynamic covalent bonds (DCBs) [28, 84]

confer a dynamic quality to self-assembled structures through their capacity for the reversible

exchange of covalent bonds, and such exchanges usually occur via associative or dissociative

pathways. Examples of DCBs include transesterification reactions, disulfide exchange and re-

versible imine formation reactions [28, 77]. Recently, there have been tremendous advancements

in design of polymeric materials [77, 85–87] through dynamic covalent bonds. These materials

come with unique features like flexibility, self-healing [58, 59, 86], adaptability and responsive-

ness [58, 77].

1.3.1 Examples of dynamic bonds in assembly of biological systems

Dynamic bondswithin biological assemblies are vital formaintaining structural integrity [88],

promoting molecular interactions, and fostering adaptability. These bonds allow biomolecular

structures to undergo necessary conformational changes [89, 90], respond to environmental stim-

uli, and fulfill their functional roles within living organisms. Discussed in the following sections
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Figure 1.1: Schematic representing the intercellular junction of epithelial cells where E-cadherin proteins
help in cell-cell adhesion (Figure created using https://biorender.com/).

are some examples of dynamic bonding in biological assemblies.

1.3.1.1 Cell-cell Adhesion via junction proteins such as Cadherins

Cadherins are transmembrane proteins [91, 92] that mediate cell-cell adhesion in animals

(Fig. 1.1 shows cadherin mediated cell-cell adhesion for epithelial cells). Cadherins from two

opposing cells form trans-bonds at the cellular interface [38, 39, 93], controlling adhesion by

reducing interfacial tension directly and indirectly through actomyosin signaling [94–96]. The

cadherin adhesion complex links cells to the cytoskeleton [94], ensuring mechanical coupling

crucial for tissue stability and cell mobility [96]. Adhesion is dynamic, with cadherins adapting

to mechanical changes. They can form various adhesive dynamic bonds, like catch [39, 93, 97,

98] and slip bonds [99, 100], enabling them to modulate adhesion strength in response to force

[101]. This modulation is critical for maintaining tissue integrity and regulating developmental
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morphogenetic processes [96, 102] in multicellular organisms.

1.3.1.2 Dynamic binding of actin filaments to myosin motors and crosslinkers

The dynamic binding of actin filaments with myosin motors and cross-linkers [103–107] is

crucial for cell morphology, stiffness, and response to mechanical signals. Myosin motors are

motor proteins that interact dynamically with actin filaments [104, 108–110] in a cyclic process

known as the cross-bridge cycle, to facilitate cellular movement and muscle contraction. The bind-

ing process involves the myosin motor domain attaching to a specific actin-binding site (shown

in Fig. 1.2 [A]), with ATP hydrolysis [109–111] powering a movement along the actin filament.

Actin cross-linking proteins [112, 113] such as 𝛼-Actinin [114] and Fascin [115] stabilize actin

filament interactions (binding of actin filaments with 𝛼-Actinin shown in Fig. 1.2 [B]) and tune

the mechanical properties of the actin network [103–106, 116–121] (by providing structural sta-

bility to actin filaments), thus contributing to the regulation of actomyosin contraction [122] in

vivo. The force-sensitive binding kinetics of cross-linkers [112, 113] further underscore their

role in governing cell mechanics and behavior. The properties of these cross-linked cytoskeletal

networks have been extensively studied via coarse-grained-simulations employing explicit cross-

linkers [103–106, 118, 119], and these systems serve as good biological analogues for cross-linked

polymeric gel networks (formed by dynamic covalent chemistry [28, 77, 84–87]), a topic explored

in detail in Chapter 4. Simulation models used to study assembly of networks formed from mi-

crotubules and motor proteins [123] were also later adapted to study the assembly of cytoskeletal

actin networks with dynamic cross-linking [124].

1.3.1.3 Reversible hydrogen bonds between complementary strands in a DNA Double

Helix

In a DNA double strand, hydrogen bonds form between complementary base pairs [125–128]

(as shown in Fig. 1.3). Adenine (A) forms two hydrogen bonds with thymine (T), and guanine
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(G) forms three hydrogen bonds with cytosine (C). This precise base pairing is pivotal for main-

taining the specificity of the DNA structure. Notably, the hydrogen bonds in DNA are dynamic,

allowing for processes like DNA replication [129–131] and transcription [132–134], during which

the strands undergo temporary separation and subsequent rejoining. Hydrogen bonds, being

relatively weak compared to covalent bonds, play a critical role in ensuring the stability and

functionality of the DNA double helix. The stability of these hydrogen bonds is sensitive to tem-

perature, and their nature is thermo-reversible. In instances of DNA denaturation [135, 136] at

elevated temperatures, the hydrogen bonds between base pairs undergo breakage, leading to the

separation of the DNA strands. It is noteworthy that this process is not isolated to individual

segments; instead, if one region of the DNA initiates denaturation, it can promote the coopera-

tive melting [137–139] of adjacent regions, contributing to the overall denaturation of the entire

DNA molecule.

1.3.1.4 Dynamic binding in ligand-receptor systems

Ligand-receptor systems [140, 141] play critical roles in numerous biological processes, facil-

itating regulation within individual cells as well as between different cells. A general prototype

of a ligand binding to a receptor to form a ligand-receptor complex [141–143] is shown in the

schematic Fig. 1.4. Upon binding, both the ligand and the receptor may undergo changes in con-

formation. The binding process is frequently characterized by two rate constants: association

(𝑘on) and dissociation (𝑘off ). The relationship between these rates, expressed as the dissociation

constant (𝐾𝑑 = 𝑘off/𝑘on), serves as an indicator of the stability [142, 143] of the ligand-receptor

complex.

Dynamic bonds in ligand-receptor systems involve non-covalent interactions like hydrogen

bonds [29, 30], ionic bonds [144–146], and van der Waals forces [147, 148], which are reversible.

Illustrative examples include antibody-antigen interactions [149] in the immune system, enzyme-

substrate binding in catalysis [150–152], G protein-coupled receptor signaling [153–155], hormone-
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Figure 1.4: Schematic representing the reversible dynamic binding / unbinding of a ligand molecule to /
from a receptor in a standard biophysical system of interest, with an equilibrium constant 𝐾eq =

𝑘on
𝑘off

, the
ratio of the forward and backward reaction rates (Figure created using https://biorender.com/).

receptor interactions [156–158] and many more. The robustness and specificity of these dynamic

bonds contribute to the overall function of these biological systems. These dynamic interactions

play crucial roles in cellular processes, facilitating reversible binding and unbinding, and are es-

sential for diverse physiological functions such as immune response and enzymatic activity [159].

1.3.2 Examples of dynamic binding in soft materials

There is a diverse range of soft materials that leverage dynamic binding to achieve properties

like self-healing, adaptability, and responsiveness to environmental stimuli [28, 58, 59, 77] as well

as to mimic the mechanics of adhesive systems in cellular biology [38, 39, 93]. Some examples

are mentioned in the following sections.

1.3.2.1 Dynamic binding in complementary emulsion droplets encapsulated with

binders / ligands

Emulsion droplets [160–163], featuring binders that can establish complementary bonds with

neighboring droplets, offer significant potential in designing intricate self-assembled structures.
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Figure 1.5: A schematic showing the adhesion of biomimetic emulsion droplets via the formation of
dynamic covalent linkages between biotin and streptavidin. Here, cellular adhesion mediated by self-
complementary cadherin proteins is replaced by a SA-biotin-SA complex bridging two droplet interfaces
[38]. The binding energy associated with forming such ligand-receptor type bonds is on the same order as
that of adhesions at cellular junctions, thus making this system a good biomimetic (Figure created using
https://biorender.com/).
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These binders engage in specific interactions, initiating a dynamic binding process [50, 161, 164]

that provides a remarkable level of specificity and selectivity to the resulting structures. DNA

serves as a versatile binder capable of facilitating programmable interactions, playing a crucial

role in diverse applications such as drug delivery and the construction of three-dimensional ma-

terials [165]. Another promising avenue where such systems can explore dynamic binding is in

mimicking the cellular adhesionmechanics [100] through design of biomimetic emulsion droplets

[38, 39, 93] coated with dynamic binding agents that can mimic the adhesive properties of bio-

logical cells. Actual adhesion proteins such as cadherins could be used or receptors such as strep-

tavidin [38, 166] which are known to bind covalently to ligands like biotin, as demonstrated in

Fig. 1.5.

1.3.2.2 Reversible hydrogels and polymeric networks formed by dynamic bonds

Dynamic covalent chemistry (DCC) [28, 77] is a fundamental strategy for crafting reversible

hydrogels and polymer networks, utilizing bonds such as disulfide, boronic ester, imine, and thiol-

ene reactions [28, 77, 84–86]. These bonds possess a distinctive ability to break and re-establish

under particular conditions, enabling ongoing rearrangement within the polymer network. This

leads to the development of materials characterized by adaptability, responsiveness, and the abil-

ity to undergo self-healing [28, 58, 59]. These systems find applications in drug delivery, and are

also employed in tissue engineering [41], with notable instances such as pH-responsive hydrogels

[167] incorporating imine bonds [77], allowing reversible changes in response to fluctuations in

pH. Additionally, polymer networks with disulfide bonds [168] exhibit self-healing properties,

aiding in material recovery following damage. Fig. 1.6 shows a schematic showing the formation

of a reversible hydrogel network mediated by dynamic covalent linkages.
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Figure 1.6: A schematic showing the formation of a reversible hydrogel network through dynamic bonds,
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requirements for self-assembly (this figure has been adapted from [57]). Only for a very narrow range
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equilibrium self-assembly is favored (indicated by the dark green shaded region in the square on the right).

1.4 Thermodynamic and Kinetic Considerations in

Self-Assembly

There are two distinct behavioral patterns observed in self-assembling systems [52, 57]: near-

equilibrium assembly, guided by thermodynamics, and far-from-equilibrium assembly, character-

ized by the crucial role of dynamic effects in the resulting structures obtained. Dynamic effects

[169, 170] usually result from the microscopic motion of the assembling particles, resulting in a

competition between several slow timescales [171, 172] in such systems.

To maintain the stability of the desired thermodynamically stable structure, optimally strong

and specific interactions among components (achieved through directional [66, 173–176] or se-

lective complementary [160, 161, 163, 177–179] binding) are essential. These interactions guar-

antee that the assembled structure exhibits lower free energy than its unassembled counterparts,

thereby outcompeting alternative assemblies [52, 57, 169].

Conversely, strong binding energies impede the equilibration dynamics [180]. Very strong
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interactions swiftly lead to the formation of metastable and kinetically trapped configurations

[181–183]. The stronger drive for optimal binding is counteracted by the slow escape from stuck

configurations (due to large energy barriers), resulting in a time-dependent dependence of the

observed yield [57, 184] on the interaction strength.

The interplay between thermodynamic and kinetic effects suggests that the formation of a

thermodynamically stable structure, also known as near-equilibrium assembly [52, 57, 184, 185],

generally occurs within a limited portion of the available parameter space, as shown in Fig. 1.7.

Fig. 1.8 shows a schematic demonstrating two possible routes of self-assembly from a mixture

of self-complementary nanoparticles encapsulated by ligands such as DNA [160, 177, 178] — (i)

near-equilibrium assembly, leading to the formation of a stable thermodynamic phase, and (ii)

far-from-equilibrium assembly which forms a kinetically trapped structure [181–183]. Kinetic

trapping occurs because of slow relaxation of the internal degrees of freedom [160–163, 186,

187]. Here, the DNA binders explore different arrangements more slowly than the timescale of

formation of structures [188]. Other examples of kinetic trapping includes cases where arrested

gels [189, 190] are formed due to strong particle interactions, and errors that cannot reconfigure

and equilibrate to form a stable phase at the timescale of observation.

1.5 Kinetic Rates and Preservation of Detailed Balance

For two given particles 1 and 2 that can bind to each other with an on rate 𝑘on and an off rate

𝑘off, the rates should be described in a way that can preserve Detailed Balance [118, 191–193], if

the system is present at equilibrium. If the equilibrium distributions for the two possible states

on (bound) and off (unbound) are 𝜋𝑏 and 𝜋𝑢 respectively, then the criterion of Detailed Balance

requires

𝜋𝑢 ( ®𝑟1, ®𝑟2)𝑘on( ®𝑟1, ®𝑟2) = 𝜋𝑏 ( ®𝑟1, ®𝑟2)𝑘off( ®𝑟1, ®𝑟2) (1.1)
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Figure 1.8: Schematic showing two possible routes of self-assembly from amixture of self-complementary
ligated nanoparticles, one resulting in a kinetically trapped structure and the other in the thermodynam-
ically favored phase (Figure created using https://biorender.com/).
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i.e. there is equilibrium between the rates of forward and backward transitions within a sys-

tem (stemming from microscopic reversibility [194]), leading to a stable state where the popula-

tions of different states remain constant over time.

Here,

𝜋𝑢 ( ®𝑟1, ®𝑟2) =
1
𝑍𝑢

exp

(
−𝑈 ( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
(1.2)

and

𝜋𝑏 ( ®𝑟1, ®𝑟2) =
1
𝑍𝑏

exp

(
−𝑈 ( ®𝑟1, ®𝑟2) + 𝐸0( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
(1.3)

where, 𝐸0( ®𝑟1, ®𝑟2) is the energy for the formation of the bond between 1 and 2.

𝜋𝑏 ( ®𝑟1, ®𝑟2)
𝜋𝑢 ( ®𝑟1, ®𝑟2)

=
𝑍𝑢

𝑍𝑏
exp

(
−𝐸0( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
(1.4)

But from Equation 1.1, we have

𝜋𝑏 ( ®𝑟1, ®𝑟2)
𝜋𝑢 ( ®𝑟1, ®𝑟2)

=
𝑘on

𝑘off
(1.5)

If we redefine 𝑍𝑢 = 𝑍 and 𝑍𝑏 = 𝑍
𝑘0off
𝑘0on

, then from Equation 1.4 and Equation 1.5, we derive

𝑘on

𝑘off
=
𝑘0on

𝑘0off
exp

(
−𝐸0( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
(1.6)

According to Equation 1.6, there are several choices [50, 99, 118, 193, 195, 196] of specifying

the rates 𝑘on and 𝑘off such that Detailed Balance is consistent, but at least one of the two rates has

to always depend on the spatial positions of the particles. Some of the possibilities include—

Model 1: Binding rate is constant and the unbinding is space dependent, commonly used in
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cases where force-dependent unbinding kinetics are modeled [99, 197, 198].

𝑘on = 𝑘0on

𝑘off = 𝑘0off exp

(
−𝐸0( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
Model 2: Unbinding rate is constant and the binding rate is space dependent, which we have

used for designing our dynamic binding/unbinding model [50, 51] discussed later in this thesis

(Chapter 2).

𝑘on = 𝑘0on exp

(
−𝐸0( ®𝑟1, ®𝑟2)

𝑘B𝑇

)
𝑘off = 𝑘0off

Model 3: Both the binding and unbinding rates depend on space.

𝑘on =
𝑘0on

1 + exp

(
𝐸0 ( ®𝑟1, ®𝑟2)
𝑘B𝑇

)

𝑘off =
𝑘0off

1 + exp

(
−𝐸0 ( ®𝑟1, ®𝑟2)

𝑘B𝑇

)

1.6 Computational Techniqes to Model and Study Soft

Materials

Modeling and studying soft materials heavily rely on computational techniques [199–204],

offering valuable insights into their behavior, properties, and possible applications. The choice

of computational technique depends on (i) the specific characteristics of the system and (ii) the
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length and time scales of interest. Often, a combination of these techniques is used to provide a

more comprehensive understanding of self-assembly and other important phenomena.

Molecular Dynamics (MD) [205–208] simulations are indispensable tools for elucidating the

behavior of soft materials at the molecular level and their structural and dynamical properties.

The typical procedure for a molecular dynamics (MD) simulation includes creating a system

model and iteratively solving Newton’s equations of motion over numerous time steps. This

process generates a collection of microscopic configurations or MD trajectories which can be

used to study the formation of self-assembled structures from a collection of interacting parti-

cles. All my projects described in this thesis have used MD simulations as the primary tool for

studying self-aggregation in different soft material systems.

Monte Carlo simulations [209–211] offer a versatile and powerful approach for studying soft

materials, adept at capturing the intrinsic complexity and randomness within such materials.

They involve defining the material system, creating a mathematical model to represent its behav-

ior, introducing randomness through random sampling [212], simulating the dynamical evolution

of the system, collecting data on structural or thermodynamic properties, analyzing the results,

and refining the model. The Metropolis-Hastings criterion [213, 214] is integral to Monte Carlo

simulations, dictating the acceptance or rejection of proposed changes to a system’s configura-

tion. It allows the simulation to explore new states while ensuring detailed balance [191] for an

equilibrium distribution. These simulations offer valuable insights into molecular configurations

and phase transitions.

Soft materials often display intricate and complex behaviors at the microscopic level. How-

ever, conducting simulations of these systems at the atomic scale can be computationally very

expensive. In coarse-grained models, groups of atoms or molecules are lumped together into a

single interaction site or bead, effectively reducing the number of degrees of freedom [215–217].

These models use simplified potentials derived frommicroscopic interactions to capture essential

system dynamics. Coarse-grained modeling [217] helps bridge the gap between molecular level
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details and macroscopic properties (emerging from collective behavior of many particles), thus

providing insights into the material’s overall behavior.

Stochastic reaction-diffusion modeling is another approach used to study the behavior of soft

materials by considering both spatial diffusion and random, stochastic reactions at the molecu-

lar level [218–220]. It enables the exploration of spatial and temporal heterogeneity [221], small

number effects [222], nonlinear reactions, and fluctuations, providing valuable insights into self-

assembly and diffusion [223] especially in biological contexts. Lattice Boltzmann Method is an-

other computational technique that simulates fluid flow [224–226] by representing the move-

ment and interactions of particles on a lattice, to capture essential hydrodynamic effects [227,

228]. Other relevant approaches such as Kinetic Monte Carlo simulations [229, 230] of individual

stochastic events (e.g. particle jumps) that occur during the system’s evolution, can be used to

study the stepwise assembly of structures and surface reactions.

Soft matter systems, such as polymers, colloids, and biomolecules, exhibit complicated dy-

namics influenced by both thermal fluctuations [9, 11] and hydrodynamic interactions. Brownian

Dynamics (BD) [231–234] is a powerful simulation technique that effectively captures these key

aspects. Brownian dynamics [231–234] simulates the motion of particles in a fluid by incorpo-

rating thermal random forces. These forces mimic the impacts of random collisions with solvent

molecules, influencing the Brownian motion of particles. The Langevin [234] equation of motion

is given by

𝑀 ¥®𝑟
(
𝑡
)
= ®𝐹 − 𝛾 ¤®𝑟

(
𝑡
)
+

√︁
2𝛾𝑘B𝑇 ®𝜂

(
𝑡
)

(1.7)

where, 𝑀 is the mass of the particle, 𝑘B is the Boltzmann constant, 𝛾𝑖 is the drag coefficient,

¤®𝒓 (𝑡) is the velocity of the particle, ®𝐹 = −∇𝑈 is the force on the particle derived from the total

potential energy function of the system, and 𝜂 (𝑡) is a delta-correlated random white noise [235],

which accounts for thermal fluctuations. In Brownian dynamics [231, 234], the inertial force term

𝑀 ¥®𝑟 (𝑡) is so much smaller than the other three that it is considered negligible. In this case, the
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equation is approximately

0 = ®𝐹 − 𝛾 ¤®𝑟
(
𝑡
)
+

√︁
2𝛾𝑘B𝑇 ®𝜂

(
𝑡
)

(1.8)

1.7 Some Theoretical Models for Soft Materials that

interact via Binding Sites

Exploring systems composed of soft materials featuring either stationary or mobile binding

sites presents intriguing avenues for investigating their aggregation or assembly behavior [73].

The mobility of these binding sites [236] is particularly noteworthy as it can significantly influ-

ence the types of structures that emerge from the assembly process [237]. Static binders that

remain relatively stationary or fixed in their positions [173, 176, 238, 239], usually result in the

formation of a more rigid and well-defined structure. Conversely, mobile binders [50, 161, 195,

240–242], capable of movement or rearrangement throughout the self-assembly process, intro-

duce dynamic [243] reconfigurability and responsiveness [28, 77, 244, 245] into the self-assembled

structures. Various theoretical models have been proposed in the past to model and simulate sys-

tems of this nature. In this section, I will provide a brief overview of a few notable ones.

1.7.1 Frenkel and Kern’s model for simulating patchy colloids

Employing amodel based on hard sphereswith isotropic short-range attractions [246–250] is a

valuable initial approach for characterizing the phase behavior of globular proteins [251, 252], and

this strategy aligns with colloidal systems [66, 238, 253]. However, it’s crucial to recognize that

this simplified model lacks complete justification for protein interactions, given their inherent

anisotropy.

Kern and Frenkel developed a model [246] (2003) to model patchy particles [66, 173, 175, 176,

238, 253] with directional interactions that give rise to selective valence. Here, a patch is defined
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as an attractive region on the surface of the particle which can be described in terms of a conical

segment with a solid (opening) angle (2𝛿) about an axis 𝑒𝛼 . The pair potential is defined as the

product of a square-well potential 𝑢ℎ𝑠𝑠𝑤
𝑖 𝑗

(𝑟 ) and an angular (orientational) function which takes

the anisotropy [246, 248, 250] of the system into account,

𝑢𝑖 𝑗 (𝑟𝑖 𝑗 ; Ω̃𝑖, Ω̃ 𝑗 ) = 𝑢ℎ𝑠𝑠𝑤𝑖 𝑗 (𝑟𝑖 𝑗 ).𝑓 (Ω̃𝑖, Ω̃ 𝑗 ) (1.9)

where for some reduced range 𝜆,

𝑢ℎ𝑠𝑠𝑤𝑖 𝑗 (𝑟 ) =



∞ for 𝑟 < 𝜎

−𝜀 for 𝜎 ≤ 𝑟 < 𝜆𝜎

0 for 𝜆𝜎 ≤ 𝑟

(1.10)

The angular dependence of the interaction depends on the direction ˆ𝑟𝑖 𝑗 of the vector ®𝑟𝑖 𝑗 and

on the particle orientations Ω̃𝑖 and Ω̃ 𝑗 as

𝑓 ( ˆ𝑟𝑖 𝑗 ; Ω̃𝑖, Ω̃ 𝑗 ) =



1 if 𝑒𝛼 . ˆ𝑟𝑖 𝑗 ≤ cos𝛿 for some patch 𝛼 on 𝑖

and, 𝑒𝛽 . ˆ𝑟 𝑗𝑖 ≤ cos𝛿 for some patch 𝛽 on 𝑗

0 otherwise

(1.11)

Kern-Frenkel like patchy particlemodels [247, 248, 250] provide robust frameworks for explor-

ing self-assembly through site-specific interactions using computational techniques like Monte

Carlo or Molecular Dynamics simulations, such as those used in modeling cellulose nanocrystals

[254] (through supra-coarse grainedmethods) or colloidal clusters functionalizedwith biotinated-

DNA oligomers [176] that form patches.
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1.7.2 Application of Wertheim’s Thermodynamic Perturbation Theory

to study eqilibrium polymerization of linear chains

Generating extended objects with valence 2 (linear chains of polymers) can be quite useful for

folding studies to design interesting architectures. A major motivation driving the development

of the coarse-grained model discussed in Chapter 2 is to study optimal conditions that can help in

generating long linear chains of emulsion droplets [50, 161, 165] called colloidomers (this can guide

future folding experiments). Wertheim (1987) introduced a thermodynamic perturbation theory

(TPT) [174, 255, 256] designed for patchy colloidal particles to elucidate association phenomena

[66, 246, 257–260]. The theory operates on the premise that a sticky site on a particle is incapable

of binding concurrently to two or more sites on another particle [174, 255, 256, 258, 259, 261]. For

𝑀 identical (indistinguishable) patchy sites (in this case,𝑀 = 2 for forming chains), the Helmholtz

free energy [174, 256, 258] for the patch-patch interaction, 𝐴𝑝 is given by

𝛽𝐴𝑝

𝑁
= 𝑀

(
ln𝑋 − 𝑋

2

)
+ 𝑀

2
(1.12)

where, 𝛽 = 1
𝑘B𝑇

and 𝑋 is the fraction of sites that are not bonded. 𝑋 is calculated from the mass-

action equation

𝑋 =
1

1 +𝑀𝜌𝑋Δ (1.13)

where, 𝜌 = 𝑁
𝑉
is the particle number density and the patchy interaction strength Δ is defined as

Δ = 4𝜋
∫

𝑔HS(𝑟12)⟨𝑓 (12)⟩𝜔1,𝜔2
𝑟 212𝑑𝑟12 (1.14)

Here, 𝑔HS(𝑟12) is the reference HS fluid pair correlation function, the Mayer-f function is

𝑓 (12) = exp

(
− 𝑉 (𝑟12)

𝑘B𝑇

)
− 1 (1.15)
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and, ⟨𝑓 (12)⟩𝜔1,𝜔2
represents an angle average over all orientations of particles 1 and 2 at a fixed

relative distance 𝑟12.

Sciortino et al. [174, 256–260] performed Grand-Canonical Monte Carlo [204] simulations

for a system consisting of hard-sphere particles. These particles were characterized by a surface

coated with 𝑀 = 2 identical sites positioned diametrically opposite each other. The simulations

were carried out at various temperatures and densities [174, 258, 259]. A critical temperature for

a given 𝜌 was observed at which the system undergoes a polymerization transition [174], from

a gas of monomers. The average chain length, chain length distribution, average end-to-end dis-

tance, the static structure factor and various other thermodynamic properties were quantified for

the polymerization and remarkably, the simulation results aligned closely with the predictions of

the Wertheim theory [174, 255, 256, 258, 259]. The absence of considerations for interactions be-

tween the chains highlights a limitation in theWertheim theory, particularly evident at very high

densities, such as during the isotropic to nematic phase transition [262–265]. This observation

opens avenues for future investigations and further exploration in the field.

1.7.3 Models to study interactions of particles with mobile binding

moieties

In self-assembling soft matter systems involving functionalized emulsions [38, 160, 161, 163,

266] or lipid bilayers [70, 267–269], linkers capable of unrestricted surface diffusion on particles

have been largely employed, inspired by van der Meulen and Leunissen’s experiments [270]. The

association/dissociation transition is notablymore gradual, broadening the temperature range for

achieving equilibrium self-assembly [187, 270, 271]. The incorporation of mobile binders effec-

tively addresses concerns related to slow rearrangement kinetics, particularly in cases involving

patches with immobile binding groups. Above the DNA melting temperature, the mobile binders

(linkers) are evenly dispersed, whereas below this temperature, they visibly accumulate at the
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inter-particle junctions.

DNA-coated colloids (DNACCs) [160–164, 186, 240, 270, 272–274] stands out as one of the

most prominent systems of study involving mobile binders. Various coarse-grained strategies

have been developed in the past to calculate the free energy of interaction for a general system

of many colloids coated with DNA strands that are capped with reactive sticky-ends [240, 273,

275, 276]. The interaction between two grafted colloids is due to both the attraction (because

of decrease in free energy of bond formation) and the repulsion resulting from compression of

the DNA strands trapped between the colloids [273]. This theory does not assume that DNA-

mediated interactions are pairwise additive – many-body effects play a crucial role in controlling

valency in this class of colloids [240].

𝛽𝐹interaction = 𝐹att + 𝐹rep (1.16)

The effective interaction between DNA-coated colloids is based on the mean-field approach

developed in Refs. [275, 276]. At any given time, each linker 𝑖 can bind at most one other linker

𝑗 , with a free energy change Δ𝐺𝑖 𝑗 ( ®𝑟𝑖, ®𝑟 𝑗 ) that depends on the linker properties. Mostly, the proba-

bility that linker 𝑖 is unbound is approximately independent of whether or not any other linker is

also unbound (which holds true when the density of linkers is low enough such that two linkers

not bonded to each other can be thought of as not interacting at all). The attractive part of the

effective interaction free-energy is given by the following expression (in this limit):

𝛽𝐹att =
∑︁
𝑖

ln𝑝𝑖 +
∑︁
𝑖< 𝑗

𝑝𝑖 𝑗 (1.17)

where, 𝑝𝑖 is the probability that a linker 𝑖 is unbound and 𝑝𝑖 𝑗 is the probability that two linkers

𝑖 and 𝑗 form a bond. Also, it was shown previously in Ref. [275] that these quantities are given
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by the unique physical solution to the following set of self-consistent equations:

𝑝𝑖 𝑗 = 𝑝𝑖𝑝 𝑗 exp (−𝛽Δ𝐺𝑖 𝑗 ( ®𝑟𝑖, ®𝑟 𝑗 )) (1.18)

and

𝑝𝑖 = 1 −
∑︁
𝑗

𝑝𝑖 𝑗 (1.19)

In standard coarse-grained models for mobile DNA-coated colloids, the hybridising DNA-

strand is represented as a point-like attractive site, called sticky end, tethered to the colloidal

surface by a spacer [200, 240, 273, 275, 276]. If the spacer does not influence the structure of the

sticky end, the free energy of bond formation can be split into the following terms [240, 273, 275,

277]:

𝛽Δ𝐺𝑖 𝑗 ( ®𝑟𝑖, ®𝑟 𝑗 ) = 𝛽Δ𝐺0 + 𝛽Δ𝐺cnf( ®𝑟𝑖, ®𝑟 𝑗 , ®𝑅𝑖) (1.20)

where, 𝛽Δ𝐺0 is the hybridization free-energy for two untethered, complementaryDNA strands

in solution, and depends on the DNA sequence, temperature and salt concentration [278, 279].

𝛽Δ𝐺cnf( ®𝑟𝑖, ®𝑟 𝑗 , ®𝑅𝑖) represents the configurational entropic cost [240, 273, 275, 278] associated with

linking two tethered strands 𝑖 and 𝑗 , and depends on the positions of the grafting points, and of all

nearby colloids. This term can be either calculated analytically for simple models, or computed

via Monte Carlo simulations.

1.8 Thesis Chapters in Context

Now, having established a foundation by introducing crucial concepts, relevant phenomenol-

ogy, and examples of dynamic binding in soft matter systems, along with an exploration of self-

organization processes and the computational techniques employed for simulation, I proceed to

provide an overview of the contents within the context of this thesis. It is important to note that

all the work presented in this thesis was conducted under the guidance of and in collaboration
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with Prof. Glen M. Hocky, my dissertation advisor.

Chapter 2 introduces a coarse-grained MD simulation platform to study the self-assembly

of colloidal particles [50, 242] featuring explicit mobile binding molecules, exemplified by DNA-

coated emulsion droplets [38, 160, 162, 163, 280], where binders can freely diffuse on the sur-

face. Our focus involves optimizing experimental control parameters to achieve the highest yield

of long linear colloidomer (droplet polymer) chains [161, 164]. Through the implementation of

temperature-dependent binding/unbinding dynamics, we are able to observe the collapse of a

heptamer chain [165] into various rigid structures, aligning well with recent folding experiments.

The insights gained from our coarse-grained MD simulation model serve to guide programmable

design in experimental setups. Notably, this collaborative effort was conducted with Prof. Jasna

Brujic from the Center for Soft Matter Research and the Department of Physics at NYU.

In Chapter 3, we probe the dynamics of adhesion patch formation between two droplets,

employing explicit mobile binding moieties [240, 242, 269, 272–275]. The focus is on exploring

how the molecular features of the system can be manipulated to tune the growth, shape, and

geometry of the adhesion patch [39, 50, 161, 164]. Our investigation extends to the impact of

lateral or cis-interactions, a phenomenon crucial in enhancing binder recruitment, particularly

observed in cellular junctions where E-cadherin proteins [38, 39, 93] mediate cell-cell adhesion

[100]. Therefore, we examine the consequences of introducing lateral binding interactions [281–

285] between binders on the same droplet in the context of adhesion patch formation dynamics.

Importantly, this collaborative work has been conducted with Prof. Jasna Brujic.

Chapter 4 delves into the creation of a coarse-grainedmodeling platform, incorporating previ-

ously developed dynamic binding and unbinding kinetics. This platform aims to explore the for-

mation of both equilibrium and kinetically arrested gels [189, 190, 286–298] resulting from the in-

teraction of ligated nanoparticles andmacromerswith discrete functionalities [299–301]—moieties

capable of dynamic binding and unbinding. Our investigation encompasses the impact of binding

and unbinding kinetics, the utilization of bifunctional linkers [302], and the influence of capping
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molecules [296, 298, 303] in the design of such assemblies [189, 190, 286–298]. This ongoing work

is part of a collaborative effort of our research group with another computational and two exper-

imental research groups at the University of Texas, Austin. The simulation studies are a joint

undertaking involving our group and the research group led by Prof. Thomas Truskett.

In Chapter 5, we discuss the development of an in silico coarse-grained molecular dynamics

(CGMD) simulation platform tailored for a synthetic liquid-liquid phase separation (LLPS) sys-

tem named synDrops. This endeavor aims to investigate how the cellular environment influences

the formation of condensates [51, 304, 305]. Our findings indicate that the synergistic effects

of crowding and active matter in the cytoplasm favor mesoscale molecular assembly, offering

enhanced predictive insights into biomolecular condensate formation in vivo [305, 306]. Specifi-

cally, we observed that macromolecular crowding fosters condensate nucleation while impeding

droplet growth through coalescence. The frustration of growth is overcome by ATP-dependent

cellular activities. This workwas done in collaborationwith Prof. Liam J. Holt fromNYU Langone

School of Medicine.

In conclusion, Chapter 6 provides a comprehensive summary of the research findings and

discusses future prospects within the dynamic and diverse field of self-assembly in soft materials.

29



Chapter 2

A coarse-grained simulation model for

colloidal self-assembly via explicit

mobile binders

This chapter is adapted from the work published as [50].

2.1 Abstract

Colloidal particles with mobile binding molecules constitute a powerful platform for probing

the physics of self-assembly. Binding molecules are free to diffuse and rearrange on the surface,

giving rise to spontaneous control over the number of droplet-droplet bonds, i.e., valence, as a

function of the concentration of binders. This type of valence control has been realized experi-

mentally by tuning the interaction strength between DNA-coated emulsion droplets. Optimizing

for valence two yields droplet polymer chains, termed ‘colloidomers’, which have recently been

used to probe the physics of folding. To understand the underlying self-assembly mechanisms,
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here we present a coarse-grained molecular dynamics (CGMD) model to study the self-assembly

of this class of systems using explicit representations of mobile binding sites. We explore how va-

lence of assembled structures can be tuned through kinetic control in the strong binding limit.

More specifically, we optimize experimental control parameters to obtain the highest yield of

long linear colloidomer chains. Subsequently tuning the dynamics of binding and unbinding via

a temperature-dependent model allows us to observe a heptamer chain collapse into all possible

rigid structures, in good agreement with recent folding experiments. Our CGMD platform and

dynamic bonding model (implemented as an open-source custom plugin to HOOMD-blue) re-

veal the molecular features governing the binding patch size and valence control, and opens the

study of pathways in colloidomer folding. This model can therefore guide programmable design

in experiments.

2.2 Introduction

Self-assembly of colloidal materials can create non-trivial and programmable structures with

wide-ranging and tunable material properties. The spatio-temporal visualization of colloids ren-

ders them as useful model systems for probing the underlying physics behind assembly processes

of molecular systems [52, 53, 187, 307]. The synthesis of colloidal particles with chemically or

physically patterned solid surfaces—“patches”— has been an active area of research due to the

desire to control the bond valence and orientation, going beyond what can be achieved through

isotropic interactions [173, 176, 307, 308]. For example, a long-desired target is a diamond lat-

tice, with an open structure that is difficult to achieve without an imposed tetrahedral symmetry

[309].

The most common approach to engineering specific interactions between patches is to use

complementary strands of DNA, whose interaction strength can be tuned by the length and spe-

cific sequence of nucleotides. [177, 178, 187, 310–312]. Each DNA duplex has an associated
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melting temperature (𝑇melt) and it is possible to employ multiple sets of complementary strands

exhibiting different𝑇melt to control the types of bonds present during an annealing protocol [313].

Self-assembly of patchy particles can be studied in simulations using short-range directional

non-bonded interactions [246] or using only pairwise interactions in combination with specific

geometric constraints that prevent multiple bonding to the same patch [173, 174, 314, 315]. Inter-

actions due to many DNAs on a colloidal surface can also be computed using more detailed MD

simulations [316], or through a mean-field approach [275]. An alternative strategy to modeling

explicit patches is to develop pair-potentials from inverse design principles, which have been suc-

cessfully leveraged to produce systems that assemble with low valence, such as dimers or chains

[317, 318].

An intriguing alternative to patchy particles of fixed valence is a system of particles coated

with mobile adhesion molecules. In this case, it is possible for particles to “choose” their valence

based on the number of available neighbors with complementary binding molecules, minimizing

the total free energy of the system. Experimentally, using oil droplets in water provides a mobile

interface on which the DNA linkers segregate into patches by diffusion to give rise to e.g., dimers

when all the DNA is recruited into a single patch or droplet chains at higher concentrations of

DNA where two patches per droplet are favored [161]. Colloids with mobile binders can also be

formed by coating solid particles with fluid lipid bilayers [160, 270], or by directly functionalizing

liposomes or giant unilamellar vesicles [269, 319–321]. The mobility of the linkers broadens

the melting temperature window of the DNA, facilitating equilibrium self-assembly [187, 271].

Particles with mobile binders can also serve as a physical mimic for biological adhesion, where

cells use a variety of dynamic binding molecules to stick to each other and to surfaces [100].

To this end, biomimetic emulsion droplets have been successfully functionalized with adhesive

mobile proteins, such as biotin-streptavidin complexes [38, 266], cadherin ectodomains [93], or

other ligand-binder pairs relevant for immunotherapy [322]. Early theoretical work expanding

on the model of Ref. [275] predicts that such particles could have an equilibrium valence that
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depends on the number of available neighboring particles in the system[240].

Our previous work shows that monodisperse PDMS oil droplets functionalized with differ-

ent flavors of single-stranded DNA on the surface can self-assemble into structures of tunable

valence [160–163, 280, 323]. Under conditions where DNA bonds are reversible at room temper-

ature, these systems achieve their equilibrium valence configuration. These results are predicted

by a free-energy functional that takes into account themolecular properties of the system, includ-

ing DNA binding strength, flexibility, steric repulsion, and concentration [164]. Optimizing for

valence two, the self-assembly of complementary DNA-coated droplets yields linear colloidomer

chains [161]. Further programming the secondary interactions along the chains offers a phys-

ical model system to probe the energy landscape of biopolymer folding, and for building small

‘foldamer’ structures that can serve as the basis for larger scale assemblies [165, 324, 325]. A

complementary work demonstrated the formation of reconfigurable colloidal molecules using

polydisperse droplets surrounded by ligands [326]. It has also been shown previously through

both experiments and simulation studies that anisotropic interactions between polymer-grafted

nanoparticles (NPs) [327–330] can result in self-assembly of sheets and string-like structures. The

graft density of the polymers and the relative size of the graft to the NP can play a crucial role

in determining the kind of structures observed during self-assembly, quite analogous to how the

density of the mobile DNA binders on the surface of oil droplets can be used to tune the droplet

valence.

Motivated by these experimental studies, our work develops a coarse-grained molecular dy-

namics (CGMD) simulation model and framework to study the self-assembly of these colloidal

chains with mobile binders, and their subsequent folding. The crucial feature of our model is the

use of explicit mobile linkers with bonds between complementary binding partners. Prior work

on these types of systems used implicit models of binding between neighboring droplets via the

formation of adhesion patches, and some models included approximations to account for the dy-

namics of adhesion[240, 242, 269, 272–274]. The use of explicit mobile binders allows us to test
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the underlying assumptions in a more realistic model, albeit at the cost of additional complex-

ity. For example, our model explicitly shows how steric repulsion between binders (designed to

mimic electrostatic repulsion between DNA strands) affects the adhesion patch size and the con-

centration of binders therein. These results in turn explain the overall valence distribution that

results from the assembly process. To demonstrate the capabilities of our model, we describe the

parameters that optimize the formation of colloidal chains under kinetic control, and show that it

exhibits the folding behavior of two-dimensional colloidal chains commensurate with what has

been recently demonstrated experimentally [165]. Our scheme lays the groundwork for studying

the mechano-sensitive effects of mobile binders at interfaces, including the role of catch bonds,

lateral interactions, or cooperativity in strengthening adhesions [93, 98].

2.3 Description of the model

2.3.1 Coarse-Grained model for colloidal particles with explicit

mobile binders

The central unit of our simulation model is a droplet, as shown in Fig. 2.1a. Each droplet

consists of a central spherical particle of radius 𝑅 (type A) with 𝑁b binders distributed on the

surface. Each binder is composed of two particles — the outer particle (type C or D) is responsible

for binding complementary partners, while the inner one (type B) is used to modulate excluded

volume between binders. The positions of the binders are initialized in a “Fibonacci” arrangement

to prevent overlap between any adjacent binders in the initial configurations [331]. This pair of

particles mimics the combination of the double-stranded tether and the single-stranded sticky-

end DNA used in experiments [161] (Fig. 2.1a). This configuration also allows us to apply an

angular term to tune the propensity of the binder to stand vertically from the surface. The binders

diffuse on the surface [160] due to a harmonic bond between the center of the droplet and that
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of the inner binder particle with a spring constant 𝑘AB and rest length 𝑙0AB.

The inner and outer particles in the binder are similarly held together by a harmonic bond

with spring constant 𝑘BC and 𝑙BC = 𝑟B + 𝑟C, the sum of their radii. To have the binder stick

outward from the droplet, the two binder particles are forced to align along the radial vector

from the center of the droplet, by introducing a harmonic angular potential between the triplet

of particles with parameters 𝑘ABC and rest angle 𝜃 0ABC = 180◦. In each case, the spring constants

are chosen such that the thermal standard deviation 𝜎 =
√︁
𝑘B𝑇 /𝑘 (where 𝑘B is the Boltzmann’s

constant) is a small fraction of the rest length or angle (see Table 2.5). As a trade-off between

enforcing rigid bonds and using an infinitesimal MD time step, we chose to use spring constants

where the standard deviation is 1 − 2%.

2.3.2 Non-bonded interactions

To prevent overlap between particles, we use a soft repulsion given by

𝑈soft
(
𝑟
)
=


𝜀soft

[
1 −

(
𝑟
𝑟cut

)4]
if 𝑟 < 𝑟cut

0 if 𝑟 ≥ 𝑟cut

(2.1)

, a smoothed version of which is applied between all particle types except between pairs of outer

binder particles of complementary types (otherwise repulsion can prevent binding). Here, 𝜀soft is

the strength of the interaction potential (in units of 𝑘B𝑇 ) and 𝑟cut is the cut-off distance, as shown

by the dotted green curve in Fig. 2.2. By tuning the effective diameter of B particles, we tune the

steric repulsion between adjacent binders, which corresponds to the case of altering the screening

of the electrostatic interactions between DNA strands on the surface [164]. A smoothing function

was applied to this potential𝑈soft(𝑟 ) that results in both the potential energy and the force going
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Figure 2.1: (a) The initial configuration of a droplet with binders adhered to its surface, arrayed in their
initial “Fibonacci” structure. As shown in the inset, each binder consists of two constituent particles, which
in the case of DNA corresponds to a spacer double-stranded sequence and a single stranded sequence
which is available to bind to a complementary strand. (b) A schematic showing dynamic binding between
the outer binder particles of two droplets. Different particle types used in our python framework are
schematically labeled A–D, with C and D representing a pair of complementary binders.
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smoothly to 0 at 𝑟 = 𝑟cut, in this case the XLPOR smoothing [332] function 𝑆 (𝑟 ), given by

𝑆
(
𝑟
)
=



1 if 𝑟 < 𝑟on

(𝑟 2cut−𝑟 2)2 (𝑟 2cut+2𝑟 2−3𝑟 2on)
(𝑟 2cut−𝑟 2on)3

if 𝑟on ≤ 𝑟 ≤ 𝑟cut

0 if 𝑟 > 𝑟cut

(2.2)

Here, 𝑟on is chosen as the point at which the smoothing starts. We set 𝑟on = 0.1𝑟cut for our

simulations. The modified potential is shown in Fig. 2.2 and is given by

𝑉soft
(
𝑟
)
=


𝑆 (𝑟 )𝑈soft(𝑟 ) if 𝑟on < 𝑟cut

𝑈soft(𝑟 ) −𝑈soft(𝑟cut) if 𝑟on ≥ 𝑟cut
(2.3)

The soft potential was implemented by using HOOMD-blue’s tabulated potential option (with

1000 interpolation points between 𝑟min = 0 and 𝑟max = 1.05 𝑟cut).

Our CGMD model can be used to study droplet interactions in three dimensions, but we add

an optional confining potential for comparison with recent experiments where droplets are found

in a plane due to the effect of gravity. To replicate a quasi two-dimensional arrangement in our

system, we use a force-shifted Lennard-Jones wall potential [333] on each droplet, between a

fixed 𝑧-position and the center of the droplet A particle. The origins of the walls are given by

(0, 0, 2.5𝑅) and (0, 0,−2.5𝑅).

The wall potential is given by a shifted LJ potential with 𝑟cut = 21/6(2𝑅).

𝑉wall
(
𝑟
)
= 𝑉FLJ

(
𝑟
)
−𝑉FLJ

(
𝑟cut

)
(2.4)
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Figure 2.2: The soft repulsive pair potential 𝑉 (𝑟 ) as a function of the distance 𝑟 between two binder
particles of radius 𝑟C = 1. In this figure, 𝑟cut = 2 is indicated by the vertical dotted line. The green dotted
curve shows the potential 𝑈 (𝑟 ) without any smoothing function applied to it and the red solid curve
shows the potential 𝑉 (𝑟 ) after it is multiplied by a suitable smoothing function 𝑆 (𝑟 ).
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where, 𝑉FLJ(𝑟 ), the force-shifted Lennard-Jones pair potential is given by,

𝑉FLJ
(
𝑟
)
=



4𝜀wall
[ (
𝜎
𝑟

)12 − 𝛼 (
𝜎
𝑟

)6] if 𝑟 < 𝑟cut

+Δ𝑉
(
𝑟
)

0 if 𝑟 ≥ 𝑟cut

(2.5)

Δ𝑉
(
𝑟
)
= −(𝑟 − 𝑟cut)

𝜕𝑉LJ

𝜕𝑟
(𝑟cut) (2.6)

where 𝛼 = 1.

2.3.3 Dynamic bonding model

We model interactions between binders through covalent bonds. To do so, we develop a

plugin to HOOMD-blue [334] [335] that builds upon a model for epoxy binding developed in

Ref. [336]. Adhesive bonds form only between complementary outer binder particles of respective

droplets, as shown in Fig. 2.1b. In the simplest case, we have a mixture of droplets containing

outer binder particles that are 100% of types C andD, respectively. Themodel allows for individual

droplets to contain mixtures of binder types, and there may be many more than two types, as

designated by the user. In this study, harmonic bonds are added with spring constant 𝑘dyn and

length 𝑙dyn = 𝑟C + 𝑟D, the sum of the radii of particles forming a bond. Here, we choose harmonic

bonds, but any form of bond implemented in HOOMD-blue could be used, since our algorithm

only changes the bond table within the MD simulation, and does not compute or apply forces. 1

In our approach, we enforce that each binder can only participate in one possible binding

reaction at a time, such that all binding events are independent. In this case, each reaction can be
1TheMetropolis criterion employed for binding/unbinding described later requires knowing the energy of adding

or removing a bond. At this time only a harmonic interaction is supported, but this can be trivially extended.
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characterized as a two-state reaction, where the effective free energy difference between a bound

and an unbound state is given by

Δ𝐺 = 𝑘B𝑇 ln

(
𝑘on

𝑘off

)
≡ 𝜀 (2.7)

Here, 𝑘on and 𝑘off are the rate constants for binding and unbinding, respectively. Below, we tune

𝜀 to modulate the affinity between individual binders.

2.3.3.1 Algorithm for binding and unbinding

Here, we describe details of the algorithm for binding and unbinding, satisfying detailed bal-

ance.

Every 𝑛 steps of the MD simulation (run using HOOMD-blue), a Dynamic Bond Updater is

called. The Dynamic Bond Updater is an open source C++ plugin (based on previous work on

epoxy curing [336]) that stochastically adds or removes dynamic bonds during the course of the

MD simulation. If there is more than one dynamic bond type present in the system, the Bond

Updater has to be configured for each independently.

Each time the Bond Updater is called, it first iterates over all the existing dynamic bonds to

attempt unbinding. The probability of unbinding is calculated, given by

𝑃0off = 𝑛 𝑘off d𝑡 (2.8)

where, d𝑡 is the timestep of the MD simulation. For each bond in sequence, a uniform random

number 𝑟 ∈ [0, 1) is generated, and if 𝑟 < 𝑃off the bond is added to a list of bonds to be removed

from the bond table. Once all the possible unbinding events are taken into consideration, we

iterate over the list of bonds to be removed and perform unbinding.

After performing unbinding, we create a list of proposed bonds to add. We iterate over par-

ticles which were unbound at the start of the binding update (but not those freed by unbinding),
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and find the closest available complementary particle which is also unbound and whose distance

from the particle under consideration is between 𝑙min and 𝑙max (by iterating over HOOMD-blue’s

neighbor list). If an eligible neighbor exists, and neither particle is already in the proposed bonds

list, then this pair is appended. Our binding algorithm is inspired by (but not identical) to the

implementations in Refs. [103–105].

We then iterate over the proposed bond list, generating new uniform random numbers and

creating a bond if 𝑟 < 𝑃on. By default, 𝑃0on = 𝑛 𝑘on d𝑡 . Here we choose 𝑘on such that 𝑘on(𝑛 d𝑡) = 1,

i.e. the fastest possible reaction rate for a specific time discretization because we want to form as

many bonds as possible without rejecting too many Monte Carlo [337] moves. We note that as a

consequence, this scheme does not intend to match detailed chemical kinetics of the underlying

processes, which would require schemes that would be more computationally demanding such as

the Gillespie algorithm [338] used in Ref. [274]. To ensure detailed balance for individual binding

reactions, the probability of binding is modified [118, 193] such that 𝑃on = 𝑃0on𝑒
−Δ𝑈 (𝑑)/𝑘B𝑇 , where

Δ𝑈 is the additional energy added by creating a bond of length 𝑑 , possibly away from its rest

length. Since we are only using harmonic bonds in this work,

𝑃on(𝑑) = 𝑃0on𝑒−𝑘dyn (𝑑−𝑙dyn)
2/(2𝑘B𝑇 ), (2.9)

where 𝑘B𝑇 is the instantaneous temperature of the system.

As in Ref. [118], we are putting all of the energetic dependence into the binding step and

none in the unbinding step, although other choices are possible [193]. The stretch dependent

binding rates prevents formation of bonds which are very unlikely, so this helps in preventing

non-equilibrium heating of the system. This choice of stretch-dependent on rate and constant off

rate does not correspond to our belief about the detailedmolecular kinetics of DNAunbinding, but

rather is an algorithmic choice that is valid because we are not currently interested in including

the detailed effect of stretching on the rates, although we are planning to pursue this direction in
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the future. [97, 98, 193]

Detailed balance for the overall binding/unbinding reaction is satisfied to the best of our abil-

ity when performing a large set of binding/unbinding reactions at once (as compared to only

doing one single binding/unbinding per trial) by ensuring that every event is independent such

that the probability of the total change in bonded pairs factorizes, and each individually satisfies a

Metropolis criterion.[205, 337] We ensure independence by generating a list of possible reactions

in a deterministic order and only allowing a particle to possibly bind with one other particle. The

only possibly weak breaking of detailed balance comes in the rare situation where upon unbind-

ing, one or both of the particles was assigned a different binding partner since it was not bound

to the neighbor from whom its distance is most close to the equilibrium bond length. In practice,

because we use a stiff spring this is very unlikely, and moreover, the configuration evolves 𝑛 steps

between binding/unbinding trials, we do not expect this to cause any substantial non-equilibrium

effects.

2.3.3.2 Temperature dependence of binding/unbinding

Our dynamic bonding model allows us to use non-constant values of 𝑘off, 𝑘on. As one example,

for this work we have incorporated an optional dependence of the rate constants on temperature.

Since our binders here might represent double stranded DNA, which dissociates in a cooperative

manner, we implemented an optional tunable sigmoidal dependence on temperature for the rate

constants. Here, we describe how the binding and unbinding rates are made temperature depen-

dent in such a way that the fraction of bound pairs at the equilibrium distance tends smoothly to

zero at high 𝑇 , with 50% bound pairs at a specified melting temperature 𝑇melt (Fig. 2.3).

Without trying to match the behavior of any specific module, we implemented a two param-

eter sigmoidal dependence on temperature to represent cooperative melting,

𝑔
(
𝑇
)
=
1
2

[
tanh

(
𝛼

(
𝑇 −𝑇melt

))
+ 1

]
, (2.10)
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Figure 2.3: (a) 𝑔(𝑇 ) vs. 𝑇 (b) Fraction 𝑓bound
(
𝑇
)
of DNA that is bound for a single DNA pair vs. 𝑇 for two

different binding strengths 𝜀 = 3.0 and 16.0. (The temperature is in units of 𝑇 ∗).
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𝑘on/off
(
𝑇
)
= 𝑘 initon/off

(
1 − 𝑔

(
𝑇
) )

+ 𝑘melt
on/off 𝑔

(
𝑇
)

(2.11)

where, 𝑘melt
on/off is the value of the binding (or unbinding) rate constant after the melting of bonds.

The dependence on 𝑇 − 𝑇melt arises in a two state melting model[339] where Δ𝐻melt and Δ𝑆melt

are taken to be constants; in this case Δ𝐺 = Δ𝐻melt − 𝑇Δ𝑆melt = Δ𝐻melt − 𝑇Δ𝐻melt/𝑇melt =

Δ𝐻melt
𝑇melt

(𝑇melt −𝑇 ) ∝ 𝑇 −𝑇melt; Δ𝑆 = Δ𝐻/𝑇melt because Δ𝐺 (𝑇 = 𝑇melt) = 0.

Combining these results in for either off or on rates and Δ𝑇 = 𝑇 −𝑇melt,

𝑘on/off (𝑇 ) =
𝑘melt
on/off − 𝑘 initon/off

2
tanh(𝛼Δ𝑇 ) +

𝑘melt
on/off + 𝑘 initon/off

2
, (2.12)

such that when Δ𝑇 ≫ 0, 𝑘 → 𝑘melt and Δ𝑇 ≪ 0, 𝑘 → 𝑘 init. Here, we can set the steepness of

the transition with the parameter 𝛼 (which in experiment could be tuned by changing the DNA

sequence and sequence length). 𝑇melt should be the temperature where the fraction of bonds

formed is 0.5.

For a two-state model, the bound fraction is given by

𝑓bound
(
𝑇
)
=

𝐾eq(𝑇 )
1 + 𝐾eq(𝑇 )

(2.13)

where, 𝐾eq(𝑇 ) = 𝑘on(𝑇 )/𝑘off (𝑇 ). Ensuring 𝑓bound(𝑇melt) = 0.5 requires 𝑘on(𝑇melt) = 𝑘off (𝑇melt).

Therefore

𝑘 initon + 𝑘melt
on = 𝑘 initoff + 𝑘melt

off (2.14)

since, 𝑔(𝑇melt) = 0.5. We choose 𝑘onmelt = 0, so that there is no binding at 𝑇 ≫ 𝑇melt, at which

point 𝑘offmelt can be determined from Eq. 2.14. Fig. 2.3(b) shows how 𝑓bound depends on𝑇melt using

this model.
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Combining all of these facts together, we get

𝑘on(𝑇 ) = 𝑘 initon

(
1 − tanh(𝛼Δ𝑇 )

2

)
, (2.15)

𝑘off (𝑇 ) =
𝑘 initon − 2𝑘 initoff

2
tanh(𝛼Δ𝑇 ) +

𝑘 initon
2
, (2.16)

which satisfy all the correct limits for Δ𝑇 ≪ 0, Δ𝑇 ≫ 0 and Δ𝑇 = 0.

We note that the on rate expression is the commonly used Glauber rule [340] from Monte

Carlo simulations [205, 337, 341] assuming a difference in (free) energy between two states pro-

portional to Δ𝑇 as explained above, but here the off rate is a modification of this Glauber rule

that switches between two finite rates rather than zero and infinity.

2.3.4 Comparison of model and experiment geometry

While this CGMD model is generic, Fig. 2.4 shows how the geometry can be compared to the

experimental setup in Ref. [161]. The radius of one binder sphere corresponds to the sticky end

of length ∼ 5.1nm, which is our reduced unit of length. Therefore, a droplet radius of 𝑅 = 300

corresponds to the droplet size of ∼ 1530nm used in Ref. [161]. Smaller particle sizes studied in

Section 2.5 are also used in experiments.

Practically, our simulations are computationally limited to hundreds of binders per droplet.

Therefore, we equate the scale of the simulations to experiments by matching the excluded vol-

ume of all binders to that of DNA surface coverage in the experiment. More specifically, the

surface coverage, 𝑝 is defined as

𝑝 =
4𝜋𝑟B2𝑁b

4𝜋𝑅2
= 𝑁b

(𝑟B
𝑅

)2
. (2.17)

In the experiment, for droplets of radius 𝑅 = 1530 nm, an effective repulsive radius of DNA
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Figure 2.4: Complementary binders in our CG model mapped onto the dsDNA and ssDNA configu-
ration of Ref. [161] for scale. Complementary outer binder particles (red and blue) form a dynamic
bond representing the interaction between complementary DNA strands (Figure created with https:
//biorender.com/).
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of 1.5nm [164, 342, 343], and an estimated 1×103 − 2×104 DNA strands[161, 164], 𝑝 ranges from

∼ 0.001 − 0.02 or 0.1 − 2% coverage. For many simulations below, we use 𝑟B = 1, 𝑅 = 50, and

𝑁b = 100, in which case 𝑝 = 0.04. From this perspective, each binder plays the collective role of

hundreds of DNA.

2.4 Simulation methods

MD simulations[205] of droplets coated with mobile binders were performed using HOOMD-

blue version 2.9.6 [334, 335, 344]. The Langevin integrator [234, 345] was used to integrate all

particles forward in time. Two different values of the drag coefficient 𝛾 were used: one for the

droplets (𝛾A) and the other for the binders (𝛾binder).

The equation of motion for each particle 𝑖 in Langevin dynamics [346] is given by:

𝑚𝑖
¥®𝑟𝑖
(
𝑡
)
= ®𝐹𝑖 − 𝛾𝑖 ¤®𝑟𝑖

(
𝑡
)
+

√︁
2𝛾𝑖𝑘B𝑇 ®𝜂

(
𝑡
)

(2.18)

where, 𝑚𝑖 is the mass of the particle, 𝑘B is the Boltzmann constant, 𝛾𝑖 is the drag coefficient,

¤®𝒓 𝒊 (𝑡) is the velocity of the particle, ®𝐹𝑖 = −∇𝑈𝑖 is the force on particle 𝑖 derived from the total

potential energy function of the system, and 𝜂 (𝑡) is the delta-correlated random white noise,

with zero mean and unit variance. We use the tree neighbor list [347, 348] to accelerate non-

bonded calculations, and in the construction of our list of possible pairs to bond as described

above.
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Figure 2.5: Illustration of adhesion patch formation for a dimer of droplets. Patch formation under con-
ditions with high binding affinity occurs via a process with two time scales (𝜏1 and 𝜏2), one for recruitment
of most linkers into a patch, and a second proceeding to saturation. The conditions for this particular
simulation are 𝑅 = 50, 𝑁b = 100 and 𝜀 = 20.7. See Section 2.5.3 and Table 2.1 for more details.

2.5 Results and Discussion

2.5.1 Main objectives

In this section, we optimize simulation conditions to robustly self-assemble long colloidomers,

suppressing branched structures. We explore both themolecular properties of the system (droplet

radius, binder concentration, and binder interaction strength), and the experimental conditions

for assembly (particle concentration and solution viscosity). The detailed parameters used for our

MD simulations are listed in Tables 2.5, 2.6, 2.7 and 2.8. Our results indicate that kinetic factors

can be rationally employed to target the desired outcome with high yield and fidelity for fixed-

time experiments. We subsequently show that our model allows us to study the folding process

for colloidomer chains.

2.5.2 Adhesion patch formation is a two-stage process for high bond

strengths

The formation of chains requires that each droplet has two contacting neighbors. Monomers

first form dimers, after which they either combine with monomers to make trimers, or with other
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dimers to make tetramers. We therefore first probe the physical processes involved in forming a

patch in a dimer or trimer configuration, and then consider de novo assembly in Section 2.5.6 .

Simulations of patch formation begin with dimers and trimers in an initial configuration with

a single bond already formed between the droplets. Subsequently, the patches progressively grow

until they reach steady-state. We find that patch formation (at intermediate and high binding

affinities, around 𝜀 > 13) happens in two stages, as illustrated in Fig. 2.5 (see Fig. 2.7). Fitting

the fraction of unbound binders versus time with a double exponential function reveals two time

scales, as shown in Section 2.5.3. Initially, the fast time scale of recruitment of binders describes

the formation of a stable adhesion patch (𝜏1), while the saturation of the patch is captured by a

1–2 orders of magnitude slower timescale (𝜏2). Table 2.1 reports values of 𝜏1 and 𝜏2 for some of

these conditions. Slowing binder motion by increasing 𝛾binder or slowing binding by decreasing

𝑘on at fixed bond strength 𝜀 increase the recruitment time 𝜏1, as shown in Fig. 2.6; these changes

should increase the yield of higher valences, discussed in Section 2.5.6. Modulation of 𝑘on could

perhaps be realized in experiment by modifying the length of the spacer molecule, which would

change the probability of finding a binding partner. The two-step patch recruitment has impor-

tant consequences for the kinetically controlled assembly mechanism of colloidal chains at high

𝜀.

2.5.3 Convergence of the fraction of binders not recruited in an

adhesion patch with simulation time

The fraction of the total number of binders not present in the adhesion patch is monitored

over time for the case of a dimer, the terminal droplet of a trimer and also its central droplet. For

low and high 𝜀, we consider different ways of fitting the curves in order to obtain the converged

value of the fraction of free binders.

For binding affinity 𝜀 > 13, as shown in Fig. 2.7b,d,f for 𝜀 = 20.7, we fit the fraction of
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Figure 2.6: Variation of the recruitment timescale 𝜏rec for the binders into the adhesion patch of a dimer
with the binding rate constant 𝑘on for the case of 𝑅 = 50, 𝑁b = 100 at low and high binding affinities, (i)
𝜀 = 11.5 and (ii) 𝜀 = 20.7. The recruitment times were obtained using a single exponential fit done on the
data for 𝜀 = 11.5 and using a double exponential fit for 𝜀 = 20.7, respectively. Plots are shown here for
log10(𝜏rec) vs log10(𝑘on), scatter points represent the data and the linear fits to the data are indicated by
colored dashed lines. Error bars indicate the statistical error (standard deviation) for each of these data
points, calculated using a similar bootstrapping procedure as described in Section 2.5.6.4.[349, 350] 2000
bootstrap samples were generated for each of the conditions. The slopes obtained from the linear fits for
the different conditions are— (i) 𝜀 = 11.5: -0.569 (𝛾binder=0.0001), -0.542 (𝛾binder=0.001), -0.465 (𝛾binder=0.01)
and (ii) 𝜀 = 20.7: -0.403 (𝛾binder=0.0001), -0.359 (𝛾binder=0.001), -0.319 (𝛾binder=0.01). Note that in each of
these cases, the drag on the droplet particle ‘A’ is kept constant (𝛾A = 0.1).
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binders not in a patch 𝑓 (𝑡) to a double exponential function of analytical form 𝑓 (𝑡) = (𝑓 (0) −

𝑎) exp(−𝑘1𝑡) + (𝑎−𝑏) exp(−𝑘2𝑡) +𝑏, where we interpret 𝑘1 and 𝑘2 to be related to the two different

time scales—the recruitment time of the binders and the time taken for the adhesion patch to

saturate, explained in Section 2.5.2. The fraction of unrecruited binders at saturation of the

patch 𝑓 (𝑡) |𝑡=∞ = 𝑏 according to this expression. The fitted values for the parameters 𝑎, 𝑏, 𝑘1, 𝑘2

are obtained using the curve fitting feature of SciPy [349]. From the fitted values of 𝑘1 and 𝑘2, we

can estimate the recruitment time 𝜏1 and the patch saturation time 𝜏2, as shown in Table 2.1. At

larger values of 𝑅 > 100, we find that the curves for trimers are well fit by a single exponential,

and this emerges naturally in our double exponential fit with 𝑘1 and 𝑘2 being identical.

For binding affinity 𝜀 <= 13, as shown in Fig. 2.7a,c,e for 𝜀 = 9.2, we find that the fraction

remains fairly constant over time (for all the droplet radii) with fluctuations characteristic of low

𝜀. For each of these situations, we obtain amean of this fraction over the last 50% of the simulation

time (in this case, between 108 steps and 2×108 steps) and fit the curve to this constant mean value.

For all cases the final value of fraction at the final time (at 2×108 steps) has been found to lie within

5% of the fit value.

2.5.4 Optimizing bond strength, droplet size, and binder

concentration for colloidomerization

Optimal conditions for colloidomerization require considering both the dimer and the trimer

assembly, since we must find a condition where not all binders are exhausted in the dimer, where

∼ 50% of binders are available on a terminal droplet of a trimer, and where very few are left on

the trimer middle droplet, preventing branching. Fig. 2.8a shows a systematic study of the self-

assembly of droplets of varying 𝑅 and 𝜀, for a fixed total number of binders 𝑁b = 100. The heat

maps show the fraction of unbound binders in three configurations: a droplet-droplet dimer, a

terminal droplet in a trimer, and a central droplet in a trimer. Conditions for colloidomerization
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Figure 2.7: Plots showing the convergence of the fraction of the total binders𝑁b = 100 not in any adhesion
patch with the simulation time, for two different binding affinities 𝜀 = 9.2 (low)—shown in (a),(c),(e) and
𝜀 = 20.7 (high)—shown in (b),(d),(f). (a) and (b) show these cases for the dimer, (c) and (d) for the terminal
droplet of a trimer, (e) and (f) for the central droplet of the trimer. Each plot shows the convergence for
8 different droplet radii 𝑅 ranging from 20 to 200. These simulations are all run for 2×108 HOOMD steps
which is sufficient for all the individual curves to attain convergence.
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Table 2.1: A table showing the values of the recruitment time (𝜏1) and the adhesion patch satu-
ration time (𝜏2) obtained from the double exponential fit for 𝜀 = 20.7 and 𝑁b = 100

System 𝜏1 = 1/𝑘1 𝜏2 = 1/𝑘2
Dimer
(i) 𝑅 = 20.0 1.5×102 3.7×104
(ii) 𝑅 = 30.0 3.2×102 4.2×104
(iii) 𝑅 = 40.0 5.3×102 3.8×104
(iv) 𝑅 = 50.0 9.3×102 4.7×104
(v) 𝑅 = 80.0 2.5×103 5.2×104
(vi) 𝑅 = 100.0 3.6×103 3.6×104
(vii) 𝑅 = 150.0 1.1×104 1.1×105
(viii) 𝑅 = 200.0 1.3×104 7.4×104
Trimer (terminal droplet)
(i) 𝑅 = 20.0 1.7×102 4.8×104
(ii) 𝑅 = 30.0 1.7×102 1.3×104
(iii) 𝑅 = 40.0 2.1×102 4.7×103
(iv) 𝑅 = 50.0 2.9×102 2.9×103
(v) 𝑅 = 80.0 1.8×103 1.0×104
(vi) 𝑅 = 100.0 4.1×103 5.1×103
(vii) 𝑅 = 150.0 7.5×103 -
(viii) 𝑅 = 200.0 1.5×104 -
Trimer (central droplet)
(i) 𝑅 = 20.0 1.5×102 3.8×104
(ii) 𝑅 = 30.0 1.7×102 1.2×104
(iii) 𝑅 = 40.0 2.0×102 4.6×103
(iv) 𝑅 = 50.0 3.0×102 2.7×103
(v) 𝑅 = 80.0 1.7×103 1.1×104
(vi) 𝑅 = 100.0 3.0×103 -
(vii) 𝑅 = 150.0 6.6×103 -
(viii) 𝑅 = 200.0 1.2×104 -
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are satisfied in the region where the dashed ovals overlap. Later, we choose 𝑅 = 50, 𝜀 = 20.7 and

𝑁b = 100 to demonstrate that this condition results in the robust assembly of colloidomers.

The number of binders in a patch at equilibrium is dictated by the free energy of patch for-

mation, which can be considered as the difference in the chemical potential inside and outside

the patch [164]. The driving force for a binder to enter the adhesion patch is determined by

the energy of forming individual bonds, 𝜀, and opposed by steric repulsion between binders, the

stretching of binders at the interface, as well as the loss of entropy as the binder motion is con-

strained in a patch. As 𝜀 increases, the fraction of free binders decreases monotonically in the

case of both dimers and trimers until it reaches an asymptotic value that is limited by the steric

repulsion between binders.

Similarly, increasing droplet size in the strong binding limit recruits progressivelymore binders

into the patch, since there is more space at the interface between larger droplets (Fig. 2.8a). For

large 𝑅 in both dimers and trimers, we observe that the transition from no binding to all binders

in the patch is very sharp as energy gain overtakes entropic losses without a penalty from steric

repulsion. In contrast, for small radii, the recruitment of binders into the patch is more gradual

with 𝜀 due to crowding.

Changing the droplet size not only changes the cost of packing binders into a patch, but also

the entropic cost of patch formation, which increases with droplet size. Therefore, at intermediate

values of 𝜀 we observe a non-monotonic recruitment of binders into the patch as a function

of droplet size. While crowding dominates in small droplets, entropic costs dominate in large

droplets, giving rise to an optimal size for binder recruitment, e.g. 𝑅 = 120 for 𝜀 = 15 in the dimer

configuration. We thus show that competition between the energy of binding, steric repulsion

between binders, and the entropy of free binders can collectively result in non-monotonic patch

density when tuning e.g. the droplet radius.

We can now consider the transition from dimer to trimer, where two adhesion patches are

formed. Competition between the two adhesion patches results in an approximately equal split
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Figure 2.8: Heat maps showing the percentage of binders remaining on the surface of a droplet in a
dimer geometry, and on the terminal or central droplets in a trimer geometry. Conditions predicted to
be “good” for colloidomer assembly are indicated by dashed ovals, and selected conditions marked by
red open circles are illustrated in Fig. 2.11. (a) Fraction of remaining binders at fixed number of binders,
varying droplet radius and bond strength. (b) Fraction of remaining binders at fixed high bond strength,
varying number of binders and droplet radius.

55



Figure 2.9: Asymmetry in the number of unrecruited binders at saturation 𝑁ub,𝑡=𝑡𝑓 (𝑡𝑓 = 2×108 HOOMD

steps) between the two adhesion patches in a trimer for varying 𝑅 and 𝜀 (𝑁b = 100). 𝑁 (0)
ub,𝑡=𝑡𝑓

represents

the number of unrecruited binders on the first terminal droplet at saturation and 𝑁 (2)
ub,𝑡=𝑡𝑓

represents the
same for the second terminal droplet.

of binders on the middle droplet; therefore, even in cases where more than half of binders can

pack into a patch, only half of the binders on each terminal droplet are exhausted. This situation

occurs for higher 𝜀, whereas for weaker binding, entropy dominates and many binders remain

outside of the two adhesion patches on both the central and terminal droplets. We note that for

high 𝜀, rearrangement of binders between patches is expected to be slow. In Fig. 2.9 we show that

there is some asymmetry between patches except at weak binding, and therefore conclude that

the onset of effectively irreversible patch formation occurs roughly at 𝜀 ∼ 10.

In Fig. 2.8b we fix 𝜀 = 20.7 at the goldilocks value from Fig. 2.8a, and explore the effect
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of varying binder surface coverage. In this strong binding regime, we eventually saturate the

geometric limit set by the droplet size and binder repulsion (see also Fig. 2.10). If 𝑁b is increased

above this limit, it simply results in additional free binders. For small droplets, we quickly reach

the situation where not all binders on the middle droplet of a trimer can fit into two patches,

but we see that for larger droplets there is a very wide tolerance for binder concentration which

might be useful for colloidomerization.

In summary, for certain parameters (including 𝜀 = 20.7, 𝑅 = 50, 𝑁b = 100) we find that < 100%

of the binders are recruited for dimers, while in trimers patches contain exactly half of the binders

due to the competition between neighbors. This is an optimal situation for the self-assembly of

colloidomers, and we proceed to study assembly of these droplets in Section 2.5.6.

2.5.4.1 Saturation of adhesion patch

Fig. 2.10 shows that the number of binders in an adhesion patch saturates due to steric repul-

sion with 𝑁bonded < 𝑁b.

2.5.5 Illustrating a molecular recipe for colloidomers

Fig. 2.11 illustrates scenarios that are predicted to be good or bad for colloidomer assembly, as

described above; full trajectories for these conditions are also shown in Supplementary movies

M1 and M2. Considering the dimer, we see that large droplets and high 𝜀 allow almost all the

binders to fit into a patch, which is detrimental for colloidomer assembly because it terminates

the polymerization reaction. Decreasing droplet size to 𝑅 = 50 limits binders due to their steric

repulsion in the patch, leaving just enough binders to seed a trimer with no remaining binders

on the middle droplet, thus imposing the self-assembly of linear chains. Lowering the droplet

size further or decreasing the binding strength leaves too many binders free on the trimer mid-

dle droplet at equilibrium, which would eventually lead to the self-assembly of branched col-

loidomers. Fig. 2.11b illustrates that for a fixed droplet size and bond strength, the number of
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Figure 2.10: Variation of the number of binders in a saturated adhesion patch 𝑁bonded
𝑡=𝑡𝑓 with 𝑁b for

different droplet radii at 𝜀 = 20.7 for a droplet in a dimer (where 𝑡𝑓 = 2×108 HOOMD steps).
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Figure 2.11: Illustrations showing the dimer and trimer geometries simulated in Fig. 2.8, and the “molec-
ular” features of our droplet model that can be tuned to optimize for linear chains. Both results for dimers
and trimers must be considered to predict the resulting polymerization reaction. (a) Varying 𝑅 and 𝜀 at
fixed number of binders 𝑁b = 100, with dimer on left and trimer on right. (b) Varying the number of
binders 𝑁b at fixed 𝑅 = 50 and 𝜀 = 20.7. In (a) and (b), the % of free binders available (averaged over
10 independent runs) is indicated in parentheses beside each of these conditions for a droplet in a dimer
as well as the terminal and central droplet(s) of a trimer. Based on the values of the percentage of free
binders available, the conditions which are not suitable for colloidomer assembly (almost all used up in
dimer, too many remaining on central droplet in a trimer) are indicated by a red X.

binders must be chosen such that dimers have free binders to grow the chain, while trimers have

no free binders for branching via the middle droplet, as is the case for 𝑁b = 100. On the other

hand, 𝑁b = 50 has almost all the binders (97%) recruited in the case of the dimer, terminating

colloidomer assembly. For 𝑁b = 300, the central droplet of a trimer has 21% binders remaining

on the surface, which would result in the branching of colloidomers.
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2.5.6 Kinetic optimization of colloidomerization

Beyond dimers and trimers, the self-assembly of chains requires further optimization of com-

peting experimental timescales. Combining a 1:1 mixture of droplets containing complementary

binders of particles type ‘C’ and ‘D’ mimics the experiments in Ref. [161]. Tuning the density

𝜙 (area fraction) of droplets modulates the thermodynamic driving force for assembly, but also

controls the collision time between droplets and allows us to optimize the formation of long col-

loidomers out of equilibrium for fixed time of assembly. Given that the droplets are undergoing

simple diffusion, the collision time 𝜏collision ∼ ⟨𝑙2⟩/D, where 𝑙 is the distance between droplets and

𝐷 is the diffusion constant. In two dimensions, 𝑙2 ∼ 𝜙−1, such that the collision time is inversely

proportional to the droplet density. The Einstein relation gives 𝐷 = 𝑘B𝑇 /𝛾 , therefore 𝜏collision ∼ 𝛾 ,

the drag on a particle.

In Fig. 2.12, we show that by fixing the previously optimized 𝑅, 𝑁b, 𝜀 parameters and vary-

ing 𝜙 and 𝛾A, we can maximize the yield of colloidomers (with results from two lower values

of 𝜀 shown in Figs. 2.17-2.19). Previous arguments suggest that higher valences would be pre-

ferred at equilibrium [272–274], but in this case our goal is to maximize the yield of linear chains.

We therefore adopt the strategy of kinetic control, where we predict that chains can be formed

whenever adhesion patches form and exhaust approximately half of available binders before sub-

sequent droplet collisions and patch formation, based on the strategies in the previous section.

To achieve this control, we first vary the droplet density 𝜙 . Since droplet collisions are fast in

dense suspensions, we observe many droplets with valence three or four at the highest initial

density. At lower densities, valence two predominates as predicted based on our dimer or trimer

experiments; whenever that does not occur “defects” result, producing branched structures.

A second way to modulate our kinetic yield of chains can be achieved is by increasing 𝛾A for

the droplet, which slows down the collision rates without changing the thermodynamic driving

force for assembly and increases the yield of linear chains, while also avoiding loop formation
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Figure 2.12: Effect of area fraction 𝜙 and the droplet drag coefficient 𝛾A on self-assembly in a 1:1 mixture
of 81 𝑅 = 50 droplets containing 𝑁b = 100 complementary binders of type C and D (with one surplus
droplet of C/D). 𝜀 = 20.7. Here, 𝜙 = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) and 𝛾A = 0.01, 1.0 (bot-
tom and top). Every system is the same size, but each snapshot has identically sized field of view by area,
meaning droplets are cropped at 𝜙 < 0.4. Droplets are colored according to structure as shown in the key.
Each condition is accompanied with bar charts representing quantities computed over 10 independent
runs that can quantitatively help in collectively deciding the ‘winning condition’ for colloidomer forma-
tion. These quantities are labeled in the second key, and described in detail in the main text, and for each
quantity, optimal would be a larger bar. The few droplets that have valence 3 or higher are also marked
with a ‘cross’ in the representative configurations to reinforce that even the branched structures which
are considered part of ‘errors’ have long segments of droplets with valence=2. The condition we consider
optimal, 𝜙 = 0.3, 𝛾A = 1.0 is highlighted with a red box. Snapshots at 𝜙 = 0.4 show periodic images
to emphasize that structures are extended across the periodic boundaries. The distributions of structures
obtained, particle valences, and of colloidomer chain lengths for each of these 8 conditions are provided in
Fig. 2.14-2.16 respectively. Timing data for these simulations as well as larger systems are given in Tables
2.2, 2.3.
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(Fig. 2.12–upper row); full trajectories for the upper row are also provided in Supplementary

movie M3. As described in the simulation methods (Section 2.4), it is important to note that we

control drag on the central droplet and binders separately; here we only varied the drag on the

droplet particle ‘A’ (𝛾A) and kept 𝛾binder at a very small constant value, because increasing 𝛾 for

each of the binder particles can also slow down the diffusion of the droplet as a whole. We also

predict that decreasing the binding rate 𝑘on at fixed bond strength 𝜀 would be detrimental to our

goal of assembling chains, since as described earlier it would take longer to assemble a patch as

compared to the collision time of droplets (See Fig. 2.6). The relative speeds of the two competing

processes of patch recruitment and droplet-droplet collision can thus be tuned to dictate the kind

of structures observed in self-assembly and provide more insights on kinetic control.

More quantitatively, we compute the distribution of structures produced at the end of 108

steps, averaging over 10 independent simulations. We partition every interconnected assembly

using an algorithm described in Section 2.5.6.2, and then classify these structures as monomers,

dimers, linear chains (𝑁 ≥ 3), loops, and ‘other’ (at least one droplet has valence ≥ 3). To define

the best conditions for chain assembly, we sought to maximize three quantities that are shown

in bar charts next to each condition in Fig. 2.12: (1) fraction of droplets present in structures that

are not monomers or branched—which we call “success” (purple bar), (2) fraction of droplets with

valence 2 (green bar), and (3) the average maximum chain length (blue bar, which we scale by the

highest value ⟨𝑁max⟩highest = 20 observed for the condition 𝜙 = 0.4, 𝛾A = 1.0).

While conditions at 𝜙 = 0.4 have the longest chains and a high fraction of particles with

valence 2, there are also many ‘errors’ due to chain branching, and so we eliminate high density.

Conditions at lower 𝜙 have fewer errors but also shorter chains. Based on maximizing these three

metrics, we choose the condition (𝜙 = 0.3, 𝛾A = 1.0) as our best, andwe providemore details about

the structures observed at this condition in Fig. 2.13.

In Fig. 2.13a, we show the evolution of bond valence versus time, which reflects on average,

colloidomers are formed by conversion of monomers to dimers, followed by the conversion of
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Figure 2.13: Best choice of parameters for obtaining maximum quality of colloidomer chains: 𝑁b =

100, 𝑅 = 50, 𝜙 = 0.3, 𝜀 = 20.7, 𝛾A = 1.0. (a) Fraction of droplets in each possible valence versus time.
(b) Final valence distribution obtained across the 10 simulations. Open squares show optimal valence
distribution from Fig. 2g in Ref. [161]. (c) A combined histogram showing the fraction of the total number
of droplets present as a particular kind of structure from 10 different final configurations for this condition.
(d) Distribution of linear chain lengths 𝑃 (𝑁 ) obtained for this condition, with the errorbars computed
using a bootstrapping procedure described in Section 2.5.6.4. [349, 350] Open squares show experimental
length distribution from Fig. 3a in Ref. [161].
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Figure 2.14: Distributions of structures obtained from all final configurations for each of the (𝜙,𝛾A) pairs,
illustrated in Fig. 2.12. 𝜙 = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) and 𝛾A = 0.01, 1.0 (bottom and
top).

dimers to trimers. Fig. 2.13b shows the distribution of valence, and for this condition, we observe

that only ≈ 5% of droplets had valence higher than 2, which is indicative of a small number of

branching points in chains. This result actually has a higher yield of linear chains than the best

condition found experimentally in Ref. [161]. However, even a small fraction of droplets with

valence 3 can prevent extremely high quality assembly of only chains, as shown in Fig. 2.13c,

where we observe that≈ 30% of droplets are present in structures that contain at least one particle

of valence 3 (cyan bar), and hence are considered as errors. Finally, Fig. 2.13d shows that the

distribution of chain lengths seems to follow an exponential distribution, with an average length

longer than in the optimal conditions in Ref. [161]. An exponential distribution implies that it

will be challenging to obtain a large median chain length via a simple self-assembly strategy. This

comports with experimental findings, where for efficiency, a new methodology was developed to

engineer longer chains using magnetic fields applied to a dispersion in a ferrofluid [165].
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Figure 2.15: Distributions of droplet valences obtained from all final configurations for each of the (𝜙,𝛾A)
pairs, illustrated in Fig. 2.12. 𝜙 = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) and 𝛾A = 0.01, 1.0 (bottom
and top).

Figure 2.16: Distributions of colloidomer chain lengths from all final configurations for each of the (𝜙,𝛾A)
pairs, illustrated in Fig. 2.12. 𝜙 = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) and 𝛾A = 0.01, 1.0 (bottom
and top).
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2.5.6.1 Effect of kinetic factors on self-assembly in reversible regimes (low and

intermediate 𝜀)

In Section 2.5.6 we described how kinetic factors such as 𝜙 and 𝛾A can dictate the structures

formed in self-assembly for a high 𝜀. In this regime, once an adhesion patch forms, binders are

very unlikely to redistribute into bonds with other droplets. However, for reversible binding in

case of lower 𝜖 , we find that this kinetic trapping effect is not observed because redistribution of

binders between droplets is allowed here, allowing droplets to potentially achieve their equilib-

rium valence. We show a case of lower (𝜀 = 9.2) and intermediate (𝜀 = 13.8) binding affinity here

to demonstrate the effect of 𝜙 and 𝛾A for reversible binding scenarios (final configurations shown

in Figures 2.17 and 2.18 respectively.). The distribution of bond valences over time for 𝜙 = 0.3

and 𝛾A = 1.0 is shown in Fig. 2.19 for lower and intermediate 𝜀. The difference between the two

cases is the most profound for lower densities such as 𝜙 = 0.2, where for 𝜀 = 9.2, we already

obtain aggregates whereas for 𝜀 = 13.8, we end up mostly in chains, with and without branching.

For 𝜀 = 9.2 and high densities such as 𝜙 = 0.4, it is almost impossible to differentiate the effect

that low and high 𝛾A have, because of system-spanning gels forming in both situations.

2.5.6.2 Clustering via a segmentation algorithm to identify unconnected assemblies

and classification of the structures

For every frame in our simulation, we identify the unconnected assemblies of droplets bonded

to each other via a simple segmentation algorithm, using the bond table of droplet pairs. The bond

table is a list of unique pairs of droplets that have at least one dynamic bond between them.

From this list of bonded droplet pairs, we want to find the components which have common

elements between them. We follow an algorithm to continuously merge sets of pairs that have

common elements2to perform the clustering: (i) We take the first set, say ‘A’ from the list and
2https://stackoverflow.com/questions/4842613/merge-lists-that-share-common-elements
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Figure 2.17: Effect of 𝜙 and 𝛾A on the kind of self-assembled structures for our system of 81 droplets with
𝑁b = 100, 𝑅 = 50 for intermediate binding affinity 𝜀 = 13.8. The droplets are colored according to the type
of structure to which they belong, as explained in Fig. 2.12
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Figure 2.18: Effect of 𝜙 and 𝛾A on the kind of self-assembled structures for our system of 81 droplets
with 𝑁b = 100, 𝑅 = 50 for lower binding affinity 𝜀 = 9.2. The droplets are colored according to the type of
structure to which they belong, as explained in Fig. 2.12
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Figure 2.19: Fraction of droplets with a given bond valence (𝐵𝑛) as a function of the simulation time (in
HOOMD units) for the optimized condition which gives maximum quality of colloidomer chains at high
binding energy: 𝑁b = 100, 𝑅 = 50, 𝜙 = 0.3, 𝛾A = 1.0 but for (a) lower binding affinity 𝜀 = 9.2 and (b)
intermediate binding affinity 𝜀 = 13.8. The corresponding plot for 𝜀 = 20.7 is shown in Fig. 2.13a.
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separate the rest of the list from it. (ii) Next, for every other set B in the list, if B has common

element(s) with A then we merge sets A and B and remove B from the list. (iii) This step is

repeated until none of the other sets have any overlap with A. (iv) The set A is then added to the

output of the clustering. (v) Step (i) is repeated, but now with the rest of the list (excluding ‘A’). In

this way, we ultimately end up with a list of lists where each sub-list consists of droplets which

are ‘bonded’ to each other.

Once the set of unconnected assemblies (or ‘clusters’) is obtained, the next step is to classify

them into structures—monomers, dimers, linear chains (𝑁 ≥ 3), loops and ‘other’ (which includes

any branched colloidomer chains or gels/aggregates with higher droplet valences). Monomers are

identified as those that do not appear in the bond table. Next, in order to classify the remaining

droplets into the other structures, for every cluster we obtained, we first calculate the valence of

each droplet in that cluster from the bond table of droplets, and then count the number of droplets

with valence 1 and 2 respectively. If the size of the cluster is 2, then both of the droplets belong

to a ‘dimer’. However, if the size of the cluster list is greater than 2, then the valence information

will help us to further identify if it is a linear chain, a loop, or ‘other’. If the number of droplets

in the given cluster with valence 1 is 0 and the number of droplets with valence 2 is equal to the

total size of the cluster, then the structure is a ‘loop’. If the number of droplets with valence 1 is 2

and the number of droplets with valence 2 is equal to the (size of the cluster)-2, then the structure

is a ‘linear colloidomer chain’ (for which only the 2 terminal droplets have valence 1 and the rest

have valence 2). Else, the cluster is classified as ‘other’.

2.5.6.3 Execution times for MD simulations of assembly of 1:1 mixtures of C and D

droplets for different simulation conditions

2.5.6.4 Bootstrapping procedure

From the original data set of chain lengths for 10 final configurations, we create 100 new

resampled sets of data with replacements (each resampled set is of the same size as the original
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Table 2.2: A table showing the speed of MD simulations (in timesteps per second) and the ap-
proximate time (in GPU hours) taken to run 108 steps for 𝑁 = 81 droplets for various system sizes
(variable 𝑁b), with 𝑅 = 50, 𝜙 = 0.3 and 𝜀 = 20.7.

Number of binders Total number of particles TPS Number of GPU hours

on a droplet (𝑁b) in the system = 𝑁 (2𝑁b + 1) for each run of 108 steps

50 8181 2350 11.8
100 16281 1010 27.5
150 24381 800 34.7
200 32481 570 48.7
300 48681 360 77.2
500 81081 207 134.2

Table 2.3: A table showing the speed of MD simulations (in timesteps per second) and the ap-
proximate time (in GPU hours) taken to run 108 steps using HOOMD-blue for various system
densities (variable 𝜙) with 𝑅 = 50, 𝑁b = 100 and 𝜀 = 20.7. The total number of droplets 𝑁 is 81 and
the number of particles in the system is 16281.

Area fraction (𝜙) TPS Number of GPU hours

for each run of 108 steps

0.1 1070 26
0.2 1020 27.2
0.3 1010 27.5
0.4 1000 27.8

data set). To create a bootstrap sample, the resampling is done randomly, by choosing a random

integer between 0 and (the size of the original data set)-1. The element from the original data

set with this random index is then added to the bootstrap sample and this process is repeated

for as many times as the size of the original data set. Ultimately from the 100 bootstrap samples

obtained, we can calculate the mean fraction of all chain sizes and also the standard deviation.

By bootstrapping, we obtain an estimate of the error resulting from having a small number of

samples [350].
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2.5.7 Application of the model to colloidomer folding

Folding of colloidomer chains and the study of their pathways towards stable structures is an

area of active research [165]. Here, we demonstrate that our CGmodel can capture experimentally

relevant folding behavior of colloidomer chains and use this to highlight additional features of

our CG framework.

Our CG framework allows the user to generate an initial linear colloidomer chain of any

length and an arbitrary sequence of binder types. Moreover, there can bemultiple types of binders

on the same droplet. To study colloidomer folding, we mimic the experimental setup of having

two types of binders on the same droplet, C and D, each of which is self-complementary. Here, C-C

bonds are intended to make up the backbone of the chain, while D-D bonds are the ones driving

folding. As described earlier, our dynamic bonding model can also have temperature dependent

binding/unbinding (see Section 2.3.3.2 for full details). We therefore choose different melting

temperatures such that D-D bonds melt at a lower temperature, while C-C bonds stay in place.

Here, we generate folded structures using a squarewave heating and cooling cycle. During the

first segment at higher temperature, the backbone adhesion patches form and the chain explores

unfolded configurations. After that, repeated cooling and heating are used to generate low energy

structures.

In contrast to our work in Section 2.5.4 on optimizing colloidomer assembly, here we do

want to produce higher valences. This is achieved through the use of smaller 𝑅 = 20 and lower

𝜀DD = 4.6, where reversible bonding allows for rearrangements such that equilibrated structures

form. Low 𝑅 has the additional benefit of faster folding times, allowing us to generate many

structures in relatively little computational time.

As a benchmark case to confirm that our model would be applicable in future studies of col-

loidomer chain folding, we investigate the heptamer case consisting of 𝑁 = 7 droplets that has

been experimentally realized in Ref. [165]. There are four possible rigid structures which are the
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Figure 2.20: (a) Folding and unfolding cycles shown for a heptamer of droplets with 100 ‘C’ binders and
100 ‘D’ binders on each droplet, 𝑅 = 20, 𝜀DD = 4.6, 𝜀CC = ∞, and 𝛾A = 0.1. 𝑇melt = 1.2 for D-D bonds
and temperature is cycled between 1.0 and 1.3. The variation of the average bond valence ⟨𝐵𝑛⟩ (red) with
simulation time is shown, as the temperature (navy blue) is alternately raised and lowered. An expected
⟨𝐵𝑛⟩ = 1.7 is obtained when the structures unfold back to chains. (b) Histogram showing the yield of each
of the four possible folded rigid structures (ladder, chevron, rocket and flower)[165] from a total of 1500
folded structures obtained from 300 independent simulations each consisting of 5 folding and unfolding
cycles. (only 5/1500 did not reach one of these structures, and are not shown in this histogram).

73



low energy states of the heptamer. Scanning a small range of 𝑅 and 𝜀DD over 15 heating-cooling

cycles we uncover the aforementioned condition (𝑅 = 20, 𝜀DD = 4.6) where all four possible

structures are observed in a single simulation, as shown in Fig. 2.20a, and Supplementary movie

M4.

Having obtained all structures in a single long simulation, we wished to quantify the pop-

ulation of each stable folded state. We ran 300 independent simulations each consisting of 5

folding/unfolding cycles and show in Fig. 2.20b the yields of each structure; the ladder and the

chevron structures are kinetically accessible and have a higher yield than the rocket and flower

geometries, in good agreement with Ref [165].

From these preliminary studies of folding within our model, we have learned several key

principles. Firstly, we only observe the flower structure—which has the highest bond count—

when 𝜀DD is very low; this is because folding to this structure is not fully downhill, and requires

the breaking of a droplet-droplet bond (dissolving an entire adhesion patch) to reach the final

state. Second, every droplet contains both C and D binders, and so it could be a concern that the

D’s become exhausted in forming backbone bonds, which would tend to form faster than bonds

farther away in sequence space. In our simulation, this is prevented by choosing 𝑅 and 𝑁b where

the patch is fully saturated by C’s (see Fig. 2.10 and 2.21), meaning that there is no opportunity

for D’s to enter the backbone.

Moreover, the exclusion of D’s from the adhesion patches means there is a smaller area for

them to occupy, which results in faster formation of bonds during the folding process. The factors

which contribute to the speed of folding are also important to our results, since both in simula-

tions and in experiments we do not want to wait arbitrarily long times in the cooling phase when

generating low energy structures.
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Figure 2.21: Plot showing the average number of bonds of C-C (backbone) and D-D (secondary) types
per adhesion patch between adjacent droplets, as a function of the simulation time for the square wave
heating and cooling cycle described in Section 2.5.7. The conditions for this simulation are: 𝑁b = 200 (100
binders of types C and D respectively on every droplet), 𝑅 = 20, 𝛾A = 0.1. The choice of 𝑅 and 𝑁b used
here ensures that on an average, ∼ 44% of the C binders get recruited whereas ∼ 0% D binders are able to
go into an adhesion patch between any two adjacent droplets. As a result, the adhesion patches between
adjacent droplets are always fully saturated by C’s (See Section 2.5.7)
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2.5.7.1 Identification of the folded structures for the heptamer

The folded structures obtained in our 300 independent simulations for the heptamer can be

classified as either a ladder, a chevron, a rocket or a flower (see Section 2.5.7, and Ref. [165]).

These structures can be differentiated from one another on the basis of the valence of the droplets

present in the structure. A valence list of all the 7 droplets is obtained for every folded structure.

The number of droplets with valence 2,3,4,5 and 6 is calculated for each of these structures from

the list of valences. We assign the structure based on the counts for each of these valences (see

Table 2.4). We found that only 5 of the 1500 folded structures obtained could not be assigned to

any of the four folded states mentioned above.

Table 2.4: A table showing the counts of the droplet valences for the different folded geometries
for N=7 in two dimensions

Valence Ladder Chevron Rocket Flower

2 2 2 3 0
3 2 3 1 6
4 3 1 2 0
5 0 1 1 0
6 0 0 0 1

2.6 Conclusions

In this work, we report a CG model and simulation framework for colloidal liquid droplets

with explicit mobile binders. The core of this model is a dynamic bonding protocol that satisfies

detailed balance, that is very flexible in allowing one to control separately binding and unbinding

rate constants, as well as implementing a tunable temperature dependence. Both the dynamic

bonding code and the pyColloidomer framework are easy to use and freely available with exam-

ples from https://github.com/hocky-research-group/pyColloidomer_2023.

Previous modeling works have studied colloidal liquid droplets with implicit mobile linkers,
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such that bonds are formed or removed based on a statistical mechanical model that predicts

the strength of a patch and which can include timescales for bonding. Our model with explicit

binders complements these studies—while having many explicit binders makes the model higher

resolution, and hence slower, it also allows us to build insight into the adhesion patch forma-

tion process. For example, the use of explicit binders allowed us to see the effects of excluding

particles from patches once they are formed, which had major consequences for ensuring va-

lence=2 structures in optimizing colloidomer assembly, and in preventing binders from being

used up in colloidomer backbones in our folding studies. We also observe that above a certain

binding strength (around 𝜀 > 13), the growth of a patch can follow a process characterized by two

timescales, where saturation can take much longer than initial formation and recruitment. This

could have an important effect at higher densities and lower viscosities, where droplet collisions

can take place before patches are fully recruited; this effect could be incorporated into simulation

models that use a parameterized equation for the recruitment process, such as recently done in

Ref. [242]. The separation of the timescales for the motion of the droplet and for the binders in

our CGMD model can also be applied in the case of systems such as polymer-grafted nanopar-

ticles (NPs) [327–330] which can help in kinetically controlling the interactions and hence the

formation of non-equilibrium structures such as sheets and strings.

In ongoing work, we are now using these explicit binders to test the contributions to the

free energy of patch formation and patch shape predicted experimentally in Ref. [164]. We are

also expanding our dynamic bonding model to include the effect of force on unbinding rates

[97, 98, 193] to probe its effect on adhesion patch formation [161, 164], a dependence which is

known to play an important role in the behavior of biomimetic assemblies of cellular adhesion

proteins [38]. Preliminary data shows that our model captures observed behavior for folding

of two dimensional colloidomer homopolymer chains; in future work we can use our model to

compare the structures and pathways generated through the use of explicit binders with those

using very reduced models [165, 351]. We can also trivially expand our folding studies to three
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dimensions by removing confinement, which will allow us to detail folding pathways in ways

that are difficult to quantify in experiment.

Our CGmodel is quite versatile and can also be adapted to represent the behavior of analogous

systems of lipid bilayers mentioned earlier [160, 269, 270, 319–321]; it can also be used to explore

the assembly of colloidal nanoparticles coated with ligands that bond via formation of reversible

dynamic bonds with secondary linker molecules [294, 296]. Linker-mediated colloidal assembly

is a ripe area for exploration because the mobility of the secondary linkers and the reversibility in

bonding can lead to formation of kinetically controlled structures such as string-like gels. Tuning

the ratio of the linker to the colloid concentration [294, 296] can appropriately control the phase

behavior. It would be fascinating to explore the consequences of assembling our particles with

mobile binders using explicit free linkers with complementary binding sites rather than using

direct binding.

Although our model captures what we believe to be the most crucial features of systems with

mobile binding sites, there are simplifications whose effects we would like to investigate in the

future. For example, the presence of a spring between the center of the droplet and binders allows

the binders’ vertical position to vary, and by tuning this parameter we can explore the tendency

to form a planar adhesion patch — however, we are missing the lateral coupling between binders

that could be important in the case of deformable droplets. Our work also currently employs

harmonic springs, and we plan to investigate the differences where more complex stretching

behavior is taken into account [164]. Our powerful and flexible framework is freely available and

simple to use, and so we hope others will build upon our work and take these studies in new

directions.

2.7 Detailed simulation parameters

All important simulation parameters are enumerated in the tables 2.5, 2.6, 2.7 and 2.8.
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Table 2.5: A table containing all the general simulation parameters

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.0005-0.001
Dimensionality (𝑑) 2
Temperature (𝑇 ) 1.0-1.6
Number of simulation steps run (𝑛steps) 108 - 2×108
Radius of droplet (𝑅) 20.0-200.0
Radius of inner binder particle (𝑟B) 1.0
Radius of outer binder particle (𝑟C/D) 1.0
Number of binders in a droplet (𝑁b) 50-500
Mass of droplet (𝑚A) 1.0
Mass of inner binder particle (𝑚B) 0.001
Mass of outer binder particle (𝑚C/D) 0.001
Drag coefficient of droplet (𝛾A) 0.01-1.0
Drag coefficient of binder (𝛾binder) 0.0001
Harmonic bond spring constants:

(i) 𝑘AB 200.0
(ii) 𝑘BC/BD 500.0
(iii) 𝑘ABC/ABD 10.14

Harmonic bond rest lengths:
(i) 𝑙0AB 50.0 (𝑅 = 50.0)
(ii) 𝑙0BC/BD 2.0 (𝑟C = 1.0)
(iii) 𝜃 0ABC/ABD 3.141593

Epsilon for soft repulsive potential (𝜀soft) 200.0-5000.0
Cut-off distance for soft potential:

(i) 𝑟cut,AA 110.0 (𝑅 = 50.0)
(ii) 𝑟cut,AC/AD 53.0 (𝑅 = 50.0, 𝑟C=1.0)
(iii) 𝑟cut,BB 2.0 (𝑟B=1.0)
(iv) 𝑟cut,CC/DD 2.0 (𝑟C=1.0)

Epsilon for Wall Potential (𝜀wall) 10.0 (𝑑 = 2)
Cut-off distance for Wall Potential (𝑟cut,wall) 112.25 (𝑅 = 50.0)
z-coordinate of upper wall plane origin 125.0 (𝑅 = 50.0)
z-coordinate of lower wall plane origin -125.0 (𝑅 = 50.0)
Initial rate constant for binding (𝑘 initon ) 100.0-200.0
Initial rate constant for unbinding (𝑘 initoff ) 10−9-5.0
Rate constant for binding after melting (𝑘melt

on ) 0
Melting Temperature (𝑇melt) 1.2-1.6
Inflexion steepness parameter (𝛼) 200.0
Dynamic bond rest length (𝑙dyn) 2.0
Dynamic bond spring constant (𝑘dyn) 10.0
Dynamic bonding minimum distance (𝑙min) 1.368 (𝑙dyn − 2𝜎)
Dynamic bonding maximum distance (𝑙max) 2.632 (𝑙dyn + 2𝜎)
Dynamic bond checksteps (𝑛) 10
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Table 2.6: A table containing important parameters specific to the simulations for a
dimer/trimer of droplets

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.001
Temperature (𝑇 ) 1.0
Number of simulation steps run (𝑛steps) 2×108
Radius of droplet (𝑅) 20.0-200.0
Number of droplets (𝑁 ) 2,3
Number of binders on each droplet (𝑁b) 50-500
Drag coefficient of droplet (𝛾A) 0.1
Initial rate constant of binding for CC (𝑘 init,CCon ) 100.0
Initial rate constant of unbinding for CC (𝑘 init,CCoff ) 10−9 - 5.0

Table 2.7: A table containing important parameters specific to the self-assembly simulations for
a 1:1 mixture of 81 droplets

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.001
Temperature (𝑇 ) 1.0
Number of simulation steps run (𝑛steps) 108
Radius of droplet (𝑅) 50.0
Number of droplets (𝑁 ) 81 (9×9 lattice)
Number of binders on each droplet (𝑁b) 100
Drag coefficient of droplet (𝛾A) 0.01,1.0
Initial rate constant of binding for CD (𝑘 init,CDon ) 100.0
Initial rate constant of unbinding for CD (𝑘 init,CDoff ) 10−9 - 5.0
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Table 2.8: A table containing important parameters specific to the folding/unfolding simula-
tions for 300 independent simulations with 5 folding/unfolding cycles in each

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.0005
Temperature (𝑇 ) 1.0 (quench), 1.3 (heating)
Number of simulation steps run (𝑛steps) 108 (for 5 folding/unfolding cycles)
Radius of droplet (𝑅) 20.0
Number of droplets (𝑁 ) 7
Number of ‘C’ type binders on each droplet (𝑁C

b ) 100
Number of ‘D’ type binders on each droplet (𝑁D

b ) 100
Drag coefficient of droplet (𝛾A) 0.1
Initial rate constant of binding for CC/DD (𝑘 init,CC/DDon ) 200.0
Initial rate constant of unbinding for CC (𝑘 init,CCoff ) 0
Initial rate constant of unbinding for DD (𝑘 init,DDoff ) 2.0
Melting Temperature for DD (𝑇melt,DD) 1.2
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Chapter 3

Probing the molecular properties of

droplets featuring mobile binders that

govern the shape and size of the

adhesion patch and the effect of adding

lateral interactions

3.1 Abstract

Expanding upon our prior research on the self-assembly of colloidal droplets with mobile

binders [50, 240, 242, 269, 272–275], our current emphasis is on a comprehensive exploration

of the dynamics involved in adhesion patch formation between two droplets. Our objective is

to manipulate molecular features, such as droplet size, binding strength, excluded binder vol-

ume, binder concentration, and the flexibility of harmonic springs, to tune the growth, shape,
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and geometry of the adhesion patch [39, 50, 161, 164]. This investigation extends to the crucial

impact of lateral or cis-interactions, particularly relevant in cellular junctions where E-cadherin

proteins [38, 39, 93, 284, 352] mediate cell-cell adhesion [100]. Consequently, we examine the

consequences of introducing lateral binding interactions [39, 281, 282, 284, 285, 353–355] be-

tween binders on the same droplet in the context of adhesion patch formation dynamics. In our

coarse-grained model, we introduced Lennard Jones attractions [356–359] between inner binder

particles with varying interaction strengths. Our simulations demonstrate that, in the presence

of lateral binding (or cis-interactions), binders exhibit a more ordered packing [39, 284, 285] into

the adhesion patch, with a significantly higher recruitment compared to scenarios without cis

interactions, thereby reinforcing the phenomenon of ‘cis-trans cooperativity’ [39, 93, 281, 282]

observed in experiments. Recent experiments to study homophilic droplet assembly also indi-

cate an accelerated decay rate of the fraction of droplet monomers over time in the presence of

lateral interactions. In our ongoing coarse-grained simulations of droplet assembly with lateral

interactions, we are actively investigating the parameter regime that aligns with this observed

phenomenon.

3.2 Introduction

Adhesion phenomena in biological systems include processes by which cells and other bi-

ological structures adhere or stick together [360], playing vital roles in physiological processes

like development, immune responses, and tissue repair. Cell-cell adhesion is crucial for tissue

structure, supporting dynamic processes such as morphogenesis, cell locomotion, and signaling

[100, 361]. A distinctive feature that sets apart cell-cell adhesion from adhesion or aggregation in

colloidal systems is the specific binding that occurs between receptors on the surface of cells and

counter-adhesion molecules [362, 363]. Receptor-ligand binding is considered to typically take

place via a lock-and-key mechanism [141–143, 364].
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Cellular adhesion relies on achieving a balance between nonspecific, long-range interactions

encountered in the surroundings and themore specific chemical bonds formed by complementary

receptors at cell junctions [100, 362, 363, 365]. The interplay between mechanical forces and

lateral interactions [366] significantly influences adhesion in biological and biomimetic systems

[367].

Adhesion is subject to modulation by external mechanical forces [362, 368, 369], including

shear or tensile forces, which can enhance or diminish its strength. In processes like cell mi-

gration and tissue morphogenesis [370], cells or tissues utilize mechanical forces to shape their

architecture. In many cases, the kinetics of force-dependent dynamic adhesion [38, 93, 97–99]

plays a crucial role in either promoting stronger adhesion of cells under applied force (catch

bonds [371–374]), or providing a mechanism for cells to detach (slip bonds [101, 375]) or reor-

ganize in response to external forces, thus allowing for adaptability to mechanical cues in their

environment. Several theoretical models have been proposed in the past to describe the kinetics

of mechano-sensitive biological adhesion, including the Bell model [99] for slip bond kinetics.

Cadherins, acting as transmembrane proteins, facilitate calcium-dependent [376] cell adhe-

sion [39, 281, 282, 284, 285, 353]. Cadherins predominantly participate in homophilic binding

[377, 378], where cadherins of identical types on neighboring cells interact. Cadherin interac-

tions can manifest in both cis (on the same cell) and trans (between cadherins on adjacent cells)

configurations. The latter is crucial for creating ‘adherens’ junctions [39, 93, 282, 285, 352, 354,

355, 378], large protein complexes that maintain cellular integrity by bridging cells. The cis or

lateral interactions contribute to the formation of clusters on the cell membrane, strengthening

cell-cell adhesions. The interplay and cooperativity between cis and trans interactions [39, 93,

281, 282, 284, 285] play a central role in the mediation of cadherin-driven cell-cell adhesion. The

adhesive interface is formed bymultiple cadherin repeats within the extracellular domains during

the binding process [39, 93, 281, 284, 355, 378].

Experimentally designed biomimetic systems, such as emulsion droplets coated with adhesive
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ligand moieties (e.g., streptavidin/biotin) [38, 39, 93, 280] or 3D hydrogels [379–381] derived from

natural polymers, serve as versatile platforms for the study of cell adhesion. These systems offer

the capability to replicate various facets of the intricate cellular microenvironment [382–385].

They often incorporate substrates designed to mimic the extracellular matrix (ECM) of tissues,

featuring adhesion-promoting molecules like integrin ligands [383, 384, 386, 387] or cadherin

mimetics [38, 39, 93, 388]. In addition, to emulate the physiological forces experienced by cells,

these biomimetic systems allow for probing the cellular responses and adaptations in adhesion

under realistic conditions by incorporating dynamic stimuli.

Building upon our previous investigations into the self-assembly of colloidal droplets utilizing

explicit mobile binders [50, 240, 242, 269, 272–275], our current focus involves a thorough explo-

ration of the dynamic processes inherent in the formation of adhesion patches between these

biomimetic droplets functionalized with binders that can mimic cadherin-mediated adhesion [38,

39, 93, 281, 282, 284, 285, 352–355] in cells. Biological cells allow sticky mobile binders to diffuse

freely and form adhesions at the interface. Several theoretical models for cellular adhesion [389–

393] have been developed in the past that combine the interfacial elasticity of the cell membrane

[390, 392, 393] with the adhesive forces from the E-cadherin and N-cadherin binders, to deter-

mine the optimized parameters for the shape and size of the ‘adherens’ junction [390–393] (by

minimizing the global interfacial energy functional). More recently, McMullen and co-workers

have derived the free energy functional of adhesion for a circular patch to determine the equi-

librium patch size and binder density profiles within the adhesion patch [164]. Our primary goal

in these coarse-grained simulations is to manipulate molecular characteristics, including droplet

size, binding strength, excluded binder volume, binder concentration, and the flexibility of har-

monic springs, with the aim of finely tuning the growth, shape, and geometry of the resulting

adhesion patch [39, 50, 161, 164].

The ectodomains of naturally occurring cadherins create a crystalline-like two-dimensional

lattice at cell junctions [39, 281], facilitated by both trans (between adjacent cells) and cis (within
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the same cell) interactions. Recent experiments have delved into the study of cadherin-mediated

assembly using a biomimetic emulsion system of homophilic droplets. The goal of this investi-

gation was to understand the impact of cis and trans cooperativity on the kinetics of cadherin

binding, with a comparative analysis of cluster formation rates among three cadherin types: WT

E, WT N, and the cis E-cadherin mutant [39, 281, 284, 352, 355]. The studies revealed that the

rates of cluster formation are notably higher for the wild-type (WT) cadherins when compared

to the cis mutant. In our coarse-grained simulations, we have introduced Lennard Jones attrac-

tions [356–359] between inner binder particles on the same droplet (with varying interaction

strengths), to model the lateral interactions in cadherin binding. Our simulations additionally il-

lustrate that, when lateral binding is present, binders demonstrate a more organized packing [39,

284, 285] within the adhesion patch, showcasing a significantly higher patch recruitment com-

pared to cases where cis interactions are absent. This observation reinforces the phenomenon of

cis-trans cooperativity [39, 93, 281, 282, 353] observed experimentally.

3.3 Model description and incorporating Lateral

Interactions

The droplets featuring explicit mobile binders have been designed according to the coarse-

grained model described in Section 2.3.1 of Chapter 2.

3.3.1 Non-bonded interactions

To prevent overlap between particles, a soft repulsion of the form described in Section 2.3.2

of Chapter 2 has been used here as well, but now in addition, we also have presence of lateral

interactions between the inner binder particles present on the same droplet. To model the lateral

interactions between the inner binder particles, a Lennard-Jones [356–359] potential of the form
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)12 − 𝛼 (
𝜎
𝑟

)6] if 𝑟 < 𝑟cut

0 if 𝑟 ≥ 𝑟cut
(3.1)

is used. Here, 𝛼 = 1. The strength of the lateral interactions can be varied by tuning 𝜀LJ.

In order to study droplet assembly in presence and absence of lateral interactions between

binders in a quasi two-dimensional arrangement, we implement a force-shifted Lennard-Jones

wall potential [333] on each droplet, as described in Section 2.3.2 of Chapter 2.

3.3.2 Dynamic bonding model

Dynamic binding and unbinding between the binders from adjacent droplets is implemented

in exactly the same way as described in Section 2.3.3 of Chapter 2. In this chapter, we are mostly

going to consider adhesion of ‘homophilic’ droplets — in this case, adhesive bonds can form

between outer binder particles of respective droplets which are self-complementary.

3.4 Simulation Methods

MD simulations [205] for the assembly of droplets (with explicit mobile binders) were per-

formed using HOOMD-blue version 2.9.6 [334, 335, 344], in a similar manner as discussed in

Section 2.4 of Chapter 2, using the tree neighbor list [347, 348] to accelerate non-bonded calcu-

lations, and the Langevin integrator [234, 345] was used to integrate the particle motions over

time.

In case of simulations involving a dimer or trimer of droplets featuring explicit mobile binders,

since we are only interested in monitoring the growth of the adhesion patch [50, 161, 164, 242]

as a consequence of the diffusion of the mobile binders on the surface of the droplets, we have

constrained the droplets to move only along the x-direction, while performing the Langevin dy-

namics [234, 345] on the droplets.

87



In specifically the simulations where we study the microscopic parameters that control the

formation of the adhesion ring in a droplet dimer, we set the rest length (𝑙dyn) for the dynamic

bonds equal to 0, as opposed to the sum of the radii of the bonding particles. Since the binders

are typically believed to represent DNA, which are known to stand up from the surface of the

droplet, it is imperative that we make the two outer bonding particles overlap so that no dihe-

dral interactions arise (between the two inner and two outer particles from each of the adhering

droplets).

Simulation parameters are all indicated in Tables 3.1 and 3.2.

3.5 Results and Discussion

The results are organized as follows: initially, we investigate the primary parameters influ-

encing binder recruitment and adhesion patch size and shape. Subsequently, we examine the im-

pact of introducing lateral (Lennard-Jones) interactions among inner binder particles to enhance

recruitment in homophilic droplet self-assembly [39]. Finally, we aim to compare the rates of

decay in the fraction of monomers present in the system across different scenarios, with varying

strengths of lateral interactions.

3.5.1 Exploration of microscopic parameters governing the size and

shape of the adhesion patch

Fig. 3.1 shows a zoomed-in snapshot of the interface between two droplets that can adhere to

form a dimer, via dynamic bonds formed by explicit mobile binders. The choice of 𝑁𝑏 = 2000 and

a droplet radius 𝑅 = 500.0 correspond to a more realistic scale of parameters, closer to what has

been realized in experiments (as compared to the smaller droplet sizes and binder concentrations

discussed in Chapter 2).

The formation of the adhesion patch [164] involves various contributions to the free energy
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Adhesion patch

Figure 3.1: Snapshot showing the adhesion patch formed at the interface between two droplets that bind
using explicit mobile binders (𝑁𝑏 = 2000, 𝑅 = 500.0 and bond strength 𝛽𝜀 = 25.1)
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Figure 3.2: Histograms showing the probability 𝑃 (𝑑) of finding the binders in the adhesion patch at a
given radial distance 𝑑 from the center, for fixed binder concentration 𝑁𝑏 = 2000 and the droplet radius
𝑅 = 500.0, for various choices of the spring constant for the droplet-binder harmonic bond (𝑘𝐴𝐵) and the
bending (angular) spring constant (𝑘𝐴𝐵𝐶 ). Bond strength 𝛽𝜀 for these simulations was 25.1.
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(𝐴𝑝 ), including the stretching and bending energies of the binder springs and the repulsion be-

tween the binders, stemming from factors like electrostatic interactions, steric hindrance, or ex-

cluded volume effects. Additionally, the formation of the patch typically reduces the configu-

rational entropy of the system, as binders lose some freedom of movement when constrained

within the patch.

In particular, the stretching and bending energies of binder springs govern the deformations

required for adhesion, ultimately shaping the size and geometry of these adhesion patches. In our

simulations, the stiffness of the harmonic springs is controlled by the droplet-binder stretching

spring constant 𝑘𝐴𝐵 and the bending rigidity of the binders is governed by the angular spring

constant 𝑘𝐴𝐵𝐶 . We have studied these effects in our simulations.

A higher stretching constant (high 𝑘𝐴𝐵) limits deformation, potentially resulting in a smaller

adhesion patch size, while a lower stretching constant allows greater deformation, leading to a

larger patch. With high 𝑘𝐴𝐵 , binders form a circular ring due to reduced deformation, resulting

in a symmetrical distribution. Conversely, low 𝑘𝐴𝐵 promotes more deformation, allowing irreg-

ularities in patch shape, resembling a pancake.

The angular spring constant (𝑘𝐴𝐵𝐶 ) determines how binders resist bending deformations, af-

fecting their orientation on the droplet surface. High bending constant promotes flat conforma-

tions, yielding uniform adhesion patches with reduced bending energy. Conversely, low bending

constant allows greater flexibility, resulting in irregular patch shapes. A high bending constant

ensures rigidity and compact patches, while a low one permits more deformations, potentially

leading to larger or dispersed patches.

Fig. 3.2 shows histograms of the probability of finding binders at a radial distance 𝑑 from the

center (binder concentration 𝑁𝑏 = 2000 and droplet radius 𝑅 = 500.0), for various choices of

the stretching and bending spring constants. The blue curve corresponding to the lowest 𝑘𝐴𝐵

and 𝑘𝐴𝐵𝐶 is representative of the most dispersed patch (wider distribution), whereas the brown

curve (for the highest 𝑘𝐴𝐵 and 𝑘𝐴𝐵𝐶 ) shows a more compact distribution of the binders (narrower

91



kABC 
kAB 

10.0

200.0

10.0 200.0

Figure 3.3: Plots showing how the area of the adhesion patch varies with the binder concentration 𝑁𝑏

and the droplet radius 𝑅, for various choices of the spring constant for the droplet-binder harmonic bond
(𝑘𝐴𝐵) and the bending (angular) spring constant (𝑘𝐴𝐵𝐶 ). Bond strength 𝛽𝜀 for these simulations was 25.1.

distribution).

The area of the adhesion patch (in 𝜇𝑚2) and the number of binders recruited (𝑁𝑏,patch) are im-

portant quantitative metrics for monitoring the growth of the adhesion patch. Fig. 3.3 and Fig. 3.4

show respectively how the area of the ring and the number of recruited binders (𝑁𝑏,patch) vary

with the binder concentration 𝑁𝑏 , for various droplet radii 𝑅, indicated in units of 𝜇𝑚 (data points

corresponding to different 𝑅 are indicated by colored circles of increasing size scaled according to

the 𝑅 value). These analyses have been shown for various choices of (𝑘𝐴𝐵 , 𝑘𝐴𝐵𝐶 ). On an average,

the patch area and the number of recruited binders both increase with an increase in the binder
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Figure 3.4: Plots showing how the number of binders recruited into the patch (𝑁𝑏,patch) varies with the
binder concentration𝑁𝑏 and the droplet radius𝑅, for various choices of the spring constant for the droplet-
binder harmonic bond (𝑘𝐴𝐵) and the bending (angular) spring constant (𝑘𝐴𝐵𝐶 ). Bond strength 𝛽𝜀 for these
simulations was 25.1.

concentration 𝑁𝑏 .

On increasing 𝑘𝐴𝐵 from 10.0 to 200.0 (at a fixed 𝑘𝐴𝐵𝐶 ), we find the patch area and the number

of binders both decrease (since higher stretch energies promote compact patches by limiting

deformation). This trend remains the same for both low (𝑘𝐴𝐵𝐶 = 10.0) and high (𝑘𝐴𝐵𝐶 = 200.0)

bending spring constants.

Conversely, when 𝑘𝐴𝐵𝐶 is increased from 10.0 to 200.0 (at a fixed low stretch spring constant

𝑘𝐴𝐵 = 10.0), we observe that both the patch area and the number of recruited binders undergo an

increase, which is typically counter-intuitive to the idea that a higher bending spring constant
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should promote a decrease in binder density, because of the resistance to bending deformations.

This can be attributed to the fact that in case of a low stretch spring constant (𝑘𝐴𝐵 = 10.0),

the binders are more susceptible to deformation under bending forces. This increased flexibility

allows binders to accommodate bending deformations more easily. Despite their resistance to

bending (at high 𝑘𝐴𝐵𝐶 ), the binders can adjust their conformations to fit within the patch, poten-

tially leading to a higher density of binders, when the bending spring constant 𝑘𝐴𝐵𝐶 is increased.

The increased flexibility provided by the combination of low stretch and high bending constants

can also promote the expansion of the adhesion patch area. Binders can spread out more easily

over the surface due to their ability to deform under bending forces.

Fig. 3.5 shows the inner and outer rings of the adhesion patch for 𝑁𝑏 = 2000 and 𝑅 = 500.0, for

the choices of 𝑘𝐴𝐵 and 𝑘𝐴𝐵𝐶 discussed above. Typically, for the case of high 𝑘𝐴𝐵 , we should obtain

a non-uniform distribution of binders, due to the limited ability of binders to spread out (leading

to a more uniform donut-shaped ring). However, in cases of both low and high 𝑘𝐴𝐵 , we obtain a

pancake-like irregular ring shape. The only noticeable difference is that in case of low 𝑘𝐴𝐵 , the

rings appear more concentrated with binders, because the binders are able to pack tightly due

to increased flexibility and deformability. This consistent pattern of observing pancake-shaped

irregular rings (across all choices of 𝑘𝐴𝐵, 𝑘𝐴𝐵𝐶 ) can be attributed to the presence of the Boltzmann-

like exponential (metropolis) term in the binding probability 𝑃on, preventing the formation of a

large number of bonds with high stretch energies, and thereby limiting the recruitment of binders

into the patch to form clearly defined rings.

3.5.2 Effect of lateral interactions on binder recruitment and

kinetics of droplet assembly

Now, we will investigate the effect of incorporating lateral interactions between our binders

in coarse-grained MD simulations. We first ran simulations for the assembly of three droplets
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Figure 3.5: Plots showing the inner and outer rings of the adhesion patch for fixed binder concentration
𝑁𝑏 = 2000 and the droplet radius 𝑅 = 500.0, for various choices of the spring constant for the droplet-
binder harmonic bond (𝑘𝐴𝐵) and the bending (angular) spring constant (𝑘𝐴𝐵𝐶 ). Bond strength 𝛽𝜀 for these
simulations was 25.1.
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𝛃𝛆𝐋𝐉 = 𝟎

𝛃𝛆𝐋𝐉 = 𝟑

A

B

No lateral interactions present 

Lateral interactions present 

Figure 3.6: Snapshots showing the adhesion patches (from the final time point of simulation) between
three droplets with explicit mobile binders (𝑁𝑏 = 1000, 𝑅 = 100.0 and trans bond strength 𝛽𝜀 = 11), with
the inset(s) showing zoomed-in images of the adhesive patches at the droplet interfaces, (A) when no
lateral (cis) LJ interactions are present (𝛽𝜀LJ = 0) and (B) when lateral (cis) LJ interactions are present
(𝛽𝜀LJ = 3).
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Figure 3.7: Snapshot showing a further zoomed-in image of the adhesion patch formed at the interface
between two droplets (in a trimer) with 𝑁𝑏 = 1000, 𝑅 = 100.0 and trans bond strength 𝛽𝜀 = 11, and
in presence of lateral (cis) Lennard-Jones interactions between the binders, with an attraction strength
𝛽𝜀LJ = 3. The binders pack themselves in an ordered arrangement near the interface due to the presence
of lateral interactions which further reinforces the formation of more trans bonds, thus strengthening the
adhesion.
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with mobile binders (𝑁𝑏 = 1000, 𝑅 = 100.0) to form a trimer, for different conditions, where lat-

eral interaction strengths were varied. As shown in Fig. 3.6 (see the zoomed-in images), for the

case where the strength of the lateral Lennard-Jones attraction is 𝛽𝜀LJ = 0 (no lateral interactions

present), we find only a very small recruitment of binders into the patch. On the other hand,

when the interaction strength is increased to 𝛽𝜀LJ = 3, the number of binders recruited increased

by more than 2 fold (as shown in Fig. 3.8). The phenomenon arises from the more ordered ar-

rangement of binders at the interface when lateral interactions are present (as evident from the

zoomed-in snapshot of the adhesion patch in Fig. 3.7). This organized arrangement strength-

ens the adhesive bonds between binders from neighboring droplets, demonstrating the observed

cis-trans cooperativity [39, 93, 281, 282, 353] in previous experiments. Once a few binders are

recruited into the patch, they create a favorable local environment that promotes the recruitment

of additional binders, in a cascade.

Recent experiments have explored cadherin-mediated assembly using a biomimetic emulsion

system comprised of homophilic droplets. The aim was to investigate the influence of cis and

trans cooperativity on cadherin binding kinetics, analyzing cluster formation rates across three

cadherin variants: WT E, WT N, and the cis E-cadherin mutant [39, 281, 284, 352, 355]. These

studies revealed significantly higher rates of cluster formation for the wild-type (WT) cadherins

compared to the cis mutant. We wanted to determine if our coarse-grained simulations with

lateral LJ interactions between the inner binder particles could at least qualitatively match the

experimental observations about the kinetic rates.

We ran droplet assembly [39, 161] simulations for 49 homophilic droplets for a fixed amount

of simulation time (𝑁𝑏 = 250, 𝑅 = 50.0) initially arranged in a quasi-2D lattice arrangement (with

area fraction 𝜙 = 0.1). We observed that for the condition with trans bond strength 𝛽𝜀dyn = 5.0,

the fraction ofmonomers in the system decaysmuch sooner in simulation time, for the casewhere

the strength of the lateral interaction is high (𝛽𝜀LJ = 1.5− 2.0), as compared to the smaller lateral

interaction strengths 𝛽𝜀LJ = 0.0 − 1.0 (see Fig. 3.10A, top left). The simulation snapshots for all
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More recruitment of binders into 
the adhesion patch when lateral 

interactions are present

Figure 3.8: Plot of the fraction of binders recruited in the adhesion patch vs. simulation time (𝑁𝑏 = 1000,
𝑅 = 100.0 and bond strength 𝛽𝜀 = 11) for the two distinct cases, (1) when no lateral interactions are
present (𝛽𝜀LJ = 0) and, (2) when strong lateral interactions are present (𝛽𝜀LJ = 3). The presence of lateral
interactions enhances the number of binders that can be recruited into the adhesion patch. Error bars
indicate standard deviations computed from simulations across 3 repeats.
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these conditions indicating the self-assembly of these droplets for a trans bond strength 𝛽𝜀dyn =

5.0 are shown in Fig. 3.9 (upper row). The extent of clustering is clearly the maximum for 𝛽𝜀LJ =

2.0 (when 𝛽𝜀dyn = 5.0). For the slightly higher trans bond strength (𝛽𝜀dyn = 5.5), we find that there

is considerable difference in the extent of decay of the fraction of monomers (see Fig. 3.10A, top

right) between the case where 𝛽𝜀LJ = 0.0 and the higher lateral interaction strengths (𝛽𝜀LJ =

1.0−2.0). As also evident from the simulation snapshots shown in Fig. 3.9 (lower row), it appears

that for this particular trans bond strength (𝛽𝜀dyn = 5.5), the 3 higher lateral interaction strengths

almost result in similar extent of aggregation (within the fixed simulation time). This shows that

the trans binding strength (𝜀dyn) is important in determining the effect of cis-interactions on the

self-assembly kinetics when the interaction strengths are varied. The distinction in aggregation

kinetics between the various lateral interaction strengths arises because of the presence of ‘cis-

trans cooperativity’, where the presence of one binder in the patch increases the likelihood of

neighboring binders to be recruited as well. High lateral interaction strength between binders

also reduces the overall free energy of the system when binders are in close proximity within an

adhesion patch.

Next, we will calculate the rates of monomer fraction decay for these conditions and compare

them to the rates determined from experimental findings.

3.6 Conclusions

Extending our previous work on colloidal droplet self-assembly with mobile binders [240, 242,

269, 272–275] further, our current research delves into a comprehensive exploration of adhesion

patch dynamics between two droplets. In this study, we have examined how specific molecular

features, including droplet size, bond strength, binder concentration, and the flexibility of har-

monic springs, influence the growth, shape, and geometry of the adhesion patch [39, 50, 161,

164].
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ε = 5.0 , εLJ = 0.0 ε = 5.0 , εLJ = 1.0 ε = 5.0 , εLJ = 2.0

ε = 5.5 , εLJ = 0.0 ε = 5.5 , εLJ = 1.0 ε = 5.5 , εLJ = 2.0

ε = 5.0 , εLJ = 1.5

ε = 5.5 , εLJ = 1.5

Figure 3.9: Snapshots showing the assembly of 49 homophilic droplets (from the final time point of
simulation), where 𝑁𝑏 = 250 and 𝑅 = 50.0 and a 2D area fraction 𝜙 = 0.1. The scenarios shown here
correspond to two different trans bond strengths: 𝛽𝜀dyn = 5 and 𝛽𝜀dyn = 5.5 and four different lateral (cis)
interaction strengths for each: 𝛽𝜀LJ = 0, 𝛽𝜀LJ = 1, 𝛽𝜀LJ = 1.5 and 𝛽𝜀LJ = 2.
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A

B

Figure 3.10: Plots showing (A) the fraction of monomers in the system (as the assembly progresses) as a
function of the simulation time and, (B) the time evolution of the average number of bonds present in an
adhesion patch — for the system of 49 homophilic droplets, where 𝑁𝑏 = 250 and 𝑅 = 50.0 and a quasi-2D
area fraction 𝜙 = 0.1, and corresponding to two different bond strengths: 𝛽𝜀dyn = 5 and 𝛽𝜀dyn = 5.5.
Within each plot, four different lateral interaction strengths are shown: 𝛽𝜀LJ = 0 (blue), 𝛽𝜀LJ = 1 (green),
𝛽𝜀LJ = 1.5 (orange) and 𝛽𝜀LJ = 2 (red). The colored shaded regions represent the errors computed from
five repeat simulations for every condition.
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This study also investigates the impact of lateral or cis-interactions on binder recruitment,

crucial in cellular junctions like E-cadherin-mediated adhesion [38, 39, 93, 100, 284]. We explore

the consequences of introducing lateral binding interactions between binders on the same droplet

in adhesion patch formation. Using a coarse-grained model with Lennard Jones attractions, our

simulations show that lateral binding leads to a more ordered packing of binders in the adhesion

patch, significantly increasing binder recruitment compared to scenarios without cis-interactions

[39, 284, 285]. This supports the observed ‘cis-trans cooperativity’, emphasizing the accelerated

decay rate of droplet monomers with lateral interactions. Our focus is on identifying the param-

eter regime validating this phenomenon in coarse-grained simulations of droplet assembly with

lateral interactions [93, 281, 282].

In our upcoming research, we aim to analyze the experimental contributions to free energy

[394], focusing on patch formation and shape [164]. We plan to employ advanced sampling tech-

niques, such as umbrella sampling [395], to quantitatively measure the free energy of droplet

adhesion facilitated by mobile binders.

A crucial direction for our project involves incorporating forces in unbinding kinetics [97,

98, 193] for cellular adhesion proteins, like cadherins [38, 39, 93, 284], to model slip and catch

bonds [97, 98, 101, 396] observed in various mechano-sensitive systems [38, 39, 93, 99, 100].

Through molecular dynamics simulations, including steered MD [397] or constant-force MD, we

aim to determine the threshold force for rupture when pulling apart droplets with mobile binders,

initially utilizing standard unbinding kinetics. Additionally, we are intrigued by variations in the

threshold rupture force when applying slip [99] and catch [101, 371, 375, 398] bond unbinding

kinetics.
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3.7 Detailed simulation parameters

All important simulation parameters are enumerated in the table 3.1, and parameters specific

to the homophilic droplet assembly simulations are listed in the table 3.2.
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Table 3.1: A table containing all the general simulation parameters

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.001
Dimensionality (𝑑) 2
Temperature (𝑇 ) 1.0
Number of simulation steps run (𝑛steps) 107 - 5 × 107
Radius of droplet (𝑅) 50.0-500.0
Radius of inner binder particle (𝑟B) 1.0
Radius of outer binder particle (𝑟C) 1.0
Number of binders in a droplet (𝑁b) 200-2000
Mass of droplet (𝑚A) 1.0
Mass of inner binder particle (𝑚B) 0.001
Mass of outer binder particle (𝑚C) 0.001
Drag coefficient of droplet (𝛾A) 0.1
Drag coefficient of binder (𝛾binder) 0.0001
Harmonic bond spring constants:

(i) 𝑘AB 10.0-200.0
(ii) 𝑘BC 500.0
(iii) 𝑘ABC 10.0-200.0

Harmonic bond rest lengths:
(i) 𝑙0AB 51.0 (𝑅 = 50.0)
(ii) 𝑙0BC 2.0 (𝑟C = 1.0)
(iii) 𝜃 0ABC 3.141593

Epsilon for soft repulsive potential (𝜀soft) 200.0-5000.0
Cut-off distance for soft potential:

(i) 𝑟cut,AA 110.0 (𝑅 = 50.0)
(ii) 𝑟cut,AC 53.0 (𝑅 = 50.0, 𝑟C=1.0)
(iv) 𝑟cut,CC, 𝑟cut,BC 2.0 (𝑟C=1.0)

Epsilon for LJ potential for lateral interactions (𝜀LJ) 0.0-3.0
Cut-off distance for LJ potential (𝑟cut,LJ) 5.0
Epsilon for Wall Potential (𝜀wall) 20.0 (𝑑 = 2)
Cut-off distance for Wall Potential (𝑟cut,wall) 112.25 (𝑅 = 50.0)
z-coordinate of upper wall plane origin 125.0 (𝑅 = 50.0)
z-coordinate of lower wall plane origin -125.0 (𝑅 = 50.0)
Initial rate constant for binding (𝑘 initon ) 200.0
Initial rate constant for unbinding (𝑘 initoff ) 2.5 × 10−9-10.0
Rate constant for binding after melting (𝑘melt

on ) 0
Melting Temperature (𝑇melt) 1.6
Inflexion steepness parameter (𝛼) 200.0
Dynamic bond rest length (𝑙dyn) 2.0 or 0.0 (for the dimer adhesion runs)
Dynamic bond spring constant (𝑘dyn) 10.0
Dynamic bonding minimum distance (𝑙min) 1.368 (𝑙dyn − 2𝜎) or 0.0
Dynamic bonding maximum distance (𝑙max) 2.632 (𝑙dyn + 2𝜎) or 2.0
Dynamic bond checksteps (𝑛) 5
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Table 3.2: A table containing important parameters specific to the homophilic self-assembly
simulations for 49 droplets in the presence or absence of lateral LJ interactions

Description (Symbol) Value in HOOMD units

MD timestep (d𝑡 ) 0.001
Temperature (𝑇 ) 1.0
Number of simulation steps run (𝑛steps) 3 × 107
Radius of droplet (𝑅) 50.0
Number of droplets (𝑁 ) 49 (7×7 lattice)
Number of binders on each droplet (𝑁b) 250
2D Area fraction (𝜙) 0.1
Drag coefficient of droplet (𝛾A) 0.1
Epsilon for LJ potential for lateral interactions (𝜀LJ) 0.0-2.0
Cut-off distance for LJ potential (𝑟cut,LJ) 5.0
Initial rate constant of binding (𝑘 initon ) 200.0
Initial rate constant of unbinding (𝑘 initoff ) 0.81 - 1.3
Dynamic bond rest length (𝑙dyn) 2.0
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Chapter 4

Study of the structure and dynamics of

linker-mediated colloidal gels and the

effects of introducing ‘capping’

molecules

4.1 Abstract

The dynamic connectivity and organization in gel networks inspire the development of struc-

tural design principles [399, 400] for gels assembled frommulti-functional nanocrystals [189, 190,

286–298] and macromers with discrete functional groups, such as tetraPEG [299–301]. In col-

laboration with the Truskett Research Group at UT Austin, we have established an integrated

coarse-grained modeling platform treating the building blocks as ‘patchy’ colloids with discrete

binding sites [189, 190, 292, 293] that can bind or unbind dynamically [50]. Employing dynamic

bonding among the components offers kinetic tunability, and specificity, enabling the design
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of novel responsive materials [28, 58, 77]. These colloids can form networks through a linker-

mediated strategy [189, 286, 296, 298], wheremacromers or nanocrystals are reversibly connected

by bifunctional molecules [302], or by implicitly modeling them as bonds between binding sites

with the properties of a semiflexible polymer [401] chain. Our approach aims to derive design

principles for controlling the mechanical and optical properties of these gels by studying the

phase behavior through modulating the linker-to-colloid ratio, binding affinities, system densi-

ties, and linker flexibilities. We also investigate the impact of capping molecules [296, 298, 303]

(that can dynamically inhibit the binding of linkers to colloids) on the structure and dynamics

of the gel networks [402–404]. Statistical control over network valence can be achieved through

the ratios of colloidal building blocks to linkers and capping molecules. Additionally, incorpo-

rating our existing dynamic binding and unbinding model [50] provides kinetic leverage on the

binding/unbinding reaction rates with important consequences on the relative timescales of the

colloid diffusion processes and the binding/unbinding events.

4.2 Introduction

Colloidal gels are intriguing systems for study both from a scientific perspective and also for

their practical applications. What makes colloidal gels fascinating is their diverse components,

the attractive forces that stabilize their networks, and the different pathways through which gela-

tion happens [290, 404, 405]. This combination grants them distinct properties such as targeted

elastic modulus, strain hardening or softening characteristics, and optical response to deforma-

tion [287, 290, 406, 407]. These gels display a hierarchical organization at different length scales,

with building blocks varying in shape and size, ranging from nanometers to micrometers.

Most gels exhibit non-uniform structure and dynamics due to their non-equilibrium prepa-

ration protocols, such as when attractive colloids undergo kinetically arrested spinodal decom-

position [189, 257, 287, 292, 404, 408, 409]. Gels formed through these processes typically exhibit
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uneven local density variations and undergo aging as time progresses. On the other hand, equi-

librium gels resistant to aging are formed when the arrested structure truly represents a stable

state [405, 410–414]. Gelation occurs when the effective bonds between colloids in this state

persist much longer [190, 415] than the observation time, resulting in the assembly of porous,

percolating networks with visco-elastic properties [416] similar to biomolecular condensates in

the cellular cytoplasm [51, 417].

Designing equilibrium gels from colloidal particles can be achieved by limiting the number

of effective bonds formed between colloids [405, 410]. By microscopically limiting the valence

of these patchy colloids [258, 259, 314], the spinodal boundary for spontaneous phase separation

can be suppressed to low colloid volume fractions, as shown by computational studies. This has

motivated several attempts to synthesize equilibrium gels in experiments, including gels at low

particle density formed from patchy colloidal clay particles [418], DNA nanostars [419–429] (with

typically three or four double-stranded arms that reversibly bind to one another via sticky, self-

complementary single-stranded ends), and dipeptides in which 𝜋-𝜋 stacking interactions [430]

of the side chains are present to mediate gelation.

Valence-restricted patchy particles are conventional examples of this approach, but a more

robust method for macroscopically generating equilibrium gels involves introducing a secondary

linker [287], like a small bifunctional molecule, to mediate the bonds between the colloids. The

extent of bonding among the colloids can be controlled by adjusting the amount of added linker

appropriately [189, 287], as well as the specific design of the linker [189, 291, 292, 296, 298, 302].

When using short-chain linkers, networks are anticipated to exhibit behavior similar to patchy

colloidal gels [66, 174, 259, 314, 405]. Conversely, when employing high molecular-weight link-

ers, the resulting networks may resemble cross-linked polymeric gels [28, 77, 84–86, 189, 302].

The concept of bridging via secondary molecules has been used extensively in several systems

spanning from mixtures of polymers and colloids [34, 431–434] to combinations of inorganic

nanocrystals linked by ions [435–438].
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Employing dynamic covalent bonding to link gel network components allows for customiz-

able bond strength and kinetics through synthetic variations in chemical substituents and envi-

ronmental factors like pH and temperature [439–442]. This approach is foundational for creating

reversible hydrogels (such as and polymer networks, utilizing bonds such as disulfide, boronic es-

ter, imine, and thiol-ene reactions [28, 58, 59, 77, 84–86, 167, 168]. These bonds possess the unique

ability to break and reform (at ambient conditions), facilitating continuous rearrangement within

the polymer network. This results in materials (such as hydrogels assembled from tetra-PEG

macromers) that exhibit self-healing and pH-responsive stress relaxation [299, 300]. DCB ligands

and linkers have also been used to induce controlled reversible assembly of tin-doped indium

oxide (ITO) colloidal nanocrystals [288, 289, 294, 296–298, 443] into gels. The NCs were modified

with ligands containing one element of a dynamic covalent bonding pair, such as benzaldehyde

[291, 296, 298]. Gels, having distinctive mechano-optical response, were subsequently formed by

introducing a bifunctional hydrazide linker [288, 291, 296, 298, 444, 445].

Computational modeling and simulations have demonstrated that the concentration of link-

ers serves as a macroscopic control parameter in linked-colloidal gels [287, 446–448], enabling

the tuning of network connectivity and visco-elastic dynamics. By adjusting the length and con-

centration of the linker, one can alter the spinodal boundary of the mixture [189]. This boundary

determines the colloid volume fractions at which equilibrium gelation becomes possible. Simu-

lation results suggest that, especially at low colloid density, numerous linkers either attach both

ends to the same particle or form double bonds between particles, impeding the percolation of the

gel network [189, 287]. Previous simulations have also demonstrated that a significant fraction

of large loops, under constant colloid and linker concentrations, inhibits phase separation (gela-

tion) [287, 293]. Additionally, the flexibility of the linker systematically influences the structure

of the gel [292], providing further avenues for tailoring linker-mediated nanocrystal gelation.

In mixtures with a constant linker concentration, the presence of flexible or rigid linkers display

phase separation at low colloid volume fractions, in contrast to semiflexible-linker mixtures [292],
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which do not exhibit this behavior.

Previous simulation studies also have probed the dynamics associated with the formation of

equilibrium gels [190, 422, 425, 428], highlighting that the persistence time of colloid–colloid

bonds dictates the characteristic slow relaxation of the self-intermediate scattering function. Re-

entrant characteristics [433, 434] emerge when adjusting the linker concentration away from the

stoichiometric ratio, where the number of linker ends aligns with the number of colloidal binding

sites. A decrease in linker concentration diminishes the network’s connectivity by depriving the

system of linkers that connect sites on adjacent colloids.

In our present work, we have built a robust and simplified workflow building upon our previ-

ous ‘Poly-Patch’ model [189, 190, 287, 292]), integrating it with our recently developed dynamic

binding and unbinding protocol [50] (serving as a substitute for the non-bonded pair potential

interactions used earlier). This unified coarse-grained platform is designed to be applicable for

describing both multi-functional NCs [288, 289, 291, 294, 296–298, 302, 443] and macromers ex-

hibiting discrete functionality (such as tetraPEG [299, 300]). This approach, employing dynamic

bonding among the components, facilitates the design of responsive materials, involving the re-

versible connection of macromers or NCs by bifunctional molecules. Alternatively, they can be

implicitly modeled as bonds between binding sites, exhibiting the properties of a semi-flexible

polymer chain [401]. In this ongoing work, we are currently modifying the simulation setup to

model both explicit and implicit linkers. We are also exploring the influence of capping linker

molecules [291, 296, 298, 436, 449] (that can dynamically compete with binding of linker ends to

colloids), on the structure and dynamics of these gel networks. Controlling the ratios between

colloidal building blocks, linkers, and competing capping molecules can enable statistical regula-

tion of network valence. Furthermore, incorporating our existing dynamic binding and unbinding

model grants kinetic leverage over the reaction rates of binding/unbinding, which can influence

the dynamics and phase behavior of gels.
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4.3 Coarse-Grained Poly-Patch Model coupled with our

dynamic binding and unbinding protocol

In this study, we employed a modified version of the ‘Poly-Patch’ (Polymer linked, Patchy

colloid) model, a simple coarse-grained model extensively utilized in prior research on colloidal

gelation with bifunctional polymeric linker molecules [189, 190, 292]. However, our approach

in this investigation involves the integration of our recently developed dynamic binding and

unbinding scheme [50] with the existing Poly-Patch model.

This adaptation enables us to investigate the structures and dynamics involved in gel forma-

tion through bonded interactions. Unlike previous studies that utilized a non-bonded (Gaussian)

attraction between colloidal interaction sites and linker ends, our model now incorporates kinet-

ically controlled binding and unbinding rates. This modification offers a more nuanced explo-

ration of the processes underlying gel formation.

Similar to the Poly-Patch model, the linkers are modeled as short linear polymer chains [189,

190, 292] of diameter 𝜎 and mass 𝑚, and chain length 𝑀 (typically, M=8). The linkers are bi-

functional polymers of 𝑀 beads with two ends which are capable of binding to the colloids. The

colloids are represented by larger spheres (diameter = 5𝜎 and mass = 125𝑚), and their surface

is decorated with 𝑛𝑐 = 6 patches with diameter 𝜎 and mass𝑚 in an octahedral arrangement. In

the current version of the model, angle potentials are present between adjacent pairs of patches

and the colloid center to introduce a level of rigidity (as opposed to modeling the patches as rigid

bodies in previous versions of the model). The system composition is described in terms of colloid

volume fraction 𝜂𝑐 , the number ratio of the polymeric linkers to the colloids, Γlc = 𝑁𝑝/𝑁𝑐 and the

number ratio of the cap molecules to the linkers, Γcal = 𝑁cap/𝑁𝑝 (where 𝑁𝑝 is the total number of

linkers, 𝑁cap is the total number of caps, and 𝑁𝑐 is the total number of colloids in the system).

Fig. 4.1 shows a snapshot of the initial configuration (with colloids and linkers present), at a
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Figure 4.1: The initial snapshot for a system of colloids, capping molecules and polymers (linkers with
bifunctional ends) of length𝑀 = 8 at Γlc = 1.5, Γcal = 1.0, 𝜂𝑐 = 0.01, and bond strength 𝛽𝜀 = 20.0. The inset
shows a small region of the snapshot with zoomed-in images of the colloid, linker and cap molecules. The
diameter of a polymer-segment and colloid patch (𝜎), and the colloid diameter 𝜎𝑐 = 5𝜎 are indicated as
well.
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colloid volume fraction 𝜂𝑐 = 0.01 and linker-to-colloid ratio Γlc = 1.5.

The detailed parameters used for running these simulations are listed in Table 4.4.

4.3.1 Particle Interactions

Non-bonded interactions between particles were modeled using a repulsive shifted WCA po-

tential [450, 451] given by

𝑈WCA
(
𝑟
)
=


4𝜀WCA

[(
𝜎
𝑟−𝛿

)12
−

(
𝜎
𝑟−𝛿

)6]
+ 𝜀WCA if 𝑟 ≤ 𝑟 ∗

0 if 𝑟 > 𝑟 ∗
(4.1)

where, 𝑟 is the distance between the centers of two particles 𝑖 and 𝑗 , and 𝛿 =
𝜎𝑖+𝜎 𝑗
2 − 𝜎 . The point

at which the potential is truncated is given by 𝑟 ∗ = 21/6𝜎 .

Bonds between the successive beads constituting a linker were modeled using finitely ex-

tensible nonlinear elastic springs [452] with the standard ‘Kremer–Grest’ [453] parameters for

the spring constant 𝑘𝑝 and maximum bond extension 𝑟0 = 1.5𝜎 , ensuring that there is no chain

crossing. The bonds between the patches and the colloid center were also modeled similarly.

𝑈𝑝
(
𝑟
)
=


−𝑘𝑝𝑟

2
0

2 ln
[
1 −

(
𝑟
𝑟0

)2]
if 𝑟 ≤ 𝑟0

∞ if 𝑟 > 𝑟0
(4.2)

In the earlier version of the model, the polymer ends were attracted to the colloid patches via

a short-ranged Gaussian attraction, but now the formation of covalent bonds between a patch

and a linker end is modeled using dynamic bonds discussed in Chapter 2 (which are harmonic

springs in this case, with a rest length 𝑙dyn = 0), with a bond strength 𝜀.

In addition, we have cosine-squared bending (angle) potentials between sets of three consec-

utively bonded beads in a linker [454, 455], with the bending stiffness constant 𝜅 serving as a
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parameter to control the flexibility of the linker.

𝑢𝜃 (𝜃 ) =
1
2
𝜅 (cos𝜃 − cos𝜃0)2 (4.3)

Here, 𝜃 is the angle between the beads and 𝜃0 = 𝜋 is the rest angle. Mostly, simulations have

been run for fully flexible linkers (𝜅 = 0).

In the current model, as described earlier, cosine-squared angle potentials have also been

defined for adjacent pairs of patches (𝜃0 = 𝜋
2 for octahedral arrangement of patches) and the

colloid center, and the bending constant 𝜅 can be tuned to change the rigidity of the patches on

the colloid surface.

The ‘cap’ molecules which are currently of the same particle type as the colloid patches, have

the same non-bonded interactions as the latter do.

4.4 Simulation Methods

MD simulations [205] of the mixture of colloids with patchy binding sites and polymeric

linkermolecules or caps (in a cubic, periodic simulation box) were performed usingHOOMD-blue

version 4.3.0 [334, 335, 344]. Simulation parameters are all indicated in Table 4.4. The Langevin

integrator [234, 345, 456, 457] was used to integrate all particles forward in time.

The equation of motion for each particle 𝑖 in Langevin dynamics [234, 346, 457] is given by:

𝑚𝑖
¥®𝑟𝑖
(
𝑡
)
= ®𝐹𝑖 − 𝛾𝑖 ¤®𝑟𝑖

(
𝑡
)
+

√︁
2𝛾𝑖𝑘B𝑇 ®𝜂

(
𝑡
)

(4.4)

where, 𝑚𝑖 is the mass of the particle, 𝑘B is the Boltzmann constant, 𝛾𝑖 is the drag coefficient,

¤®𝒓 𝒊 (𝑡) is the velocity of the particle, ®𝐹𝑖 = −∇𝑈𝑖 is the force on particle 𝑖 derived from the total

potential energy function of the system, and 𝜂 (𝑡) is the delta-correlated random white noise,

with zero mean and unit variance. We use the cell neighbor list [347] to accelerate non-bonded

115



calculations, and in the construction of our list of possible pairs to bond as described above.

The simulations were conducted using a streamlined and robust workflow module imple-

mented in a Python 3.8.6 environment. The process includes initializing the workflow, incorpo-

rating the Poly-Patch model and the dynamic bonding plugin. Two distinct stages define the sys-

tem’s progression: (i) initialization of the system and (ii) setup of the Molecular Dynamics (MD)

run with activated particle interactions. Critical parameters are assigned values for variation

during simulations. Additionally, simulation parameters from separate .json files, containing de-

fault settings, are linked. The final step involves submitting simulation jobs to High-Performance

Computing (HPC) resources.

4.5 Results and Discussion

Using our workflow, we performed MD simulations of (i) a mixture of colloids and linker

molecules in a periodic box (ii) a mixture of colloids, linker molecules and free capping molecules

(of the same particle type as the patches on the colloids), which can bind to the linker ends and

render them ineffective for bridging colloids together (to form gels).

In these simulations, we have varied the colloid volume fraction 𝜂𝑐 , the linker-to-colloid ratio

Γlc and the cap-to-linker ratio Γcal. The binding affinity was maintained at a constant value of

𝛽𝜀 = 20.0, although we plan to probe the effects of varying the bond strength and the rates of

binding and unbinding, in the future.
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A B

Effective bond Loop

Figure 4.2: Motifs formed by the linkers when their ends bind to the colloid patches — (A) an Effective
bond is one that bridges two colloids via the ends of a single bifunctional linker (B) a Loop is formed when
the ends of a linker are bonded to patches on the same colloid, thus hindering colloidal gelation (this
figure has been adapted from [189]).

4.5.1 Colloid volume fraction and the linker-colloid ratio can

control the number of loops and effective bonds formed in

simulations

From our simulations (run for the systems where no caps are present), we quantified the

various kinds of motifs formed by the linker molecules for our choices of (𝜂𝑐, Γlc). The formation

of loops are known to hinder the gel network formation [189, 287], whereas the formation of

effective bonds serve as bridges to join two colloid moieties together (as shown in Fig. 4.2).

Here, we observe that the number of loops (intra-colloidal bridges) formed decreases as the

colloid volume fraction increases (or the system becomes more dense), and correspondingly the

number of effective bonds (inter-colloidal bridges) increases. This trend is consistent across all

the choices of the linker-to-colloid ratio Γlc. This can be explained in terms of the effect of com-

binatorial entropy (𝑆comb) in driving aggregation in such colloidal gels [458]. With increase in

colloidal volume fraction, the distance (𝑑) between the colloidal particles decreases, and as the

particles come closer, there is an increase in the number of possible inter-particle bonding pat-

terns (microstates), and this entropy difference (Δ𝑆comb(𝑑)) leads to a greater number of effective

bonds between colloids.
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For higher Γlc, more number of loops and the effective bonds per colloid are formed at a given

𝜂𝑐 , as compared to the corresponding values at a lower Γlc.

We also observe in all these plots for varying Γlc, for a certain critical value of the colloid

volume fraction (𝜂cr𝑐 ≈ 0.012), a cross-over occurs between the number of loops and effective

bonds relative to each other, thereby indicating an onset of the formation of network gels (since

for 𝜂𝑐 > 𝜂cr𝑐 , the number of effective bonds predominates over the number of loops).

4.5.2 Effects of adding capping molecules that bind to linkers on the

formation of phase separated gels

Now, we want to study the effects of introducing ‘capping’ molecules into our simulations,

where only colloids and linkers were present. Because the caps are supposed to bind to the

linkers (according to our system design), we expect significant reduction in the number of colloid-

colloid bridges formed by linkers. The effect on gelation would be more predominant as the

concentration of the cap molecules are increased.

Phase separation in these gels is quantified by the partial static structure factor 𝑆 (𝑞) for the

colloids [189, 287, 292, 459], given by

𝑆 (q) = 1
𝑁𝑐

〈 𝑁𝑐∑︁
𝑗,𝑘

exp
(
− 𝑖q · (r 𝑗 − r𝑘)

)〉
(4.5)

where, q = 2𝜋n
𝐿

is the wave-vector, 𝐿 is the edge length of the periodic simulation box, and n is a

vector of integers. r 𝑗 is the position of the 𝑗 th colloid. The structure factor was then extrapolated

to the zero-wavevector, 𝑆 (0), by fitting 𝑆 (𝑞) to a Lorentzian form [189, 460],

𝑆 (𝑞) = 𝑆 (0)
1 + (𝑞𝜉)2 (4.6)

where, 𝜉 is the correlation length. From qualitative inspections, it was hypothesized that 𝑆 (0) >
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C

B

Figure 4.3: Variation of the number of loops and effective bonds formed per colloid (at the final time point
of simulation) with the colloid volume fraction (𝜂𝑐 ) for three different linker-colloid ratios (A) Γlc = 1.5, (B)
Γlc = 2.0 and (C) Γlc = 3.0. These simulations correspond to the Γcal = 0.0 case (no cap molecules present).
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10 [189, 287, 410] is usually considered to be phase-separated in simulations.

Table 4.1: A table showing the 𝑆 (0) values for different combinations of 𝜂𝑐 and Γlc when no
capping molecules are present (Γcal = 0.0)

𝜂𝑐 Γlc = 1.5 Γlc = 2.0 Γlc = 3.0

0.002 1.4439 1.5554 1.7247
0.005 2.0949 2.9572 4.4588
0.01 3.1124 5.4857 11.1778
0.03 5.2226 14.0285 205.6339
0.05 2.3804 8.1032 15.7871

Table 4.2: A table showing the 𝑆 (0) values for different combinations of 𝜂𝑐 and Γlc, in presence
of low concentration of cap molecules (cap-to-linker ratio Γcal = 1.0)

𝜂𝑐 Γlc = 1.5 Γlc = 2.0 Γlc = 3.0

0.002 1.1738 1.1933 1.3142
0.005 1.3262 1.4757 1.4638
0.01 1.4065 1.4843 1.6938
0.03 1.1449 1.1883 1.3102
0.05 0.8017 0.8204 0.8155

Table 4.3: A table showing the 𝑆 (0) values for different combinations of 𝜂𝑐 and Γlc, when the
concentration of cap molecules is increased further (cap-to-linker ratio Γcal = 2.0)

𝜂𝑐 Γlc = 1.5 Γlc = 2.0 Γlc = 3.0

0.002 1.1092 1.1266 1.0902
0.005 1.1148 1.2078 1.0941
0.01 1.0409 1.0496 1.0980
0.03 0.8552 0.8765 0.8658
0.05 0.7577 0.7548 0.7385

Fig. 4.4 shows a phase diagram of final simulation snapshots for 𝜂𝑐 = 0.03 and 𝛽𝜀 = 20.0

where Γlc and Γcal are varied. With increasing Γlc, the gels seem to be more phase-separated, as

also corroborated by the high 𝑆 (0) values (see Table 4.1). On moving from left to right across

the phase diagram, the gels become less phase-separated as the cap concentration is increased

further (the 𝑆 (0) values also decrease, see Tables 4.2 and 4.3). This behavior is also indicated by

the trends in the 𝑆 (𝑞) vs 𝑞 plots, shown in Fig. 4.7, where, for Γcal = 0.0 (no caps present), 𝑆 (𝑞)
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diverges more at 𝑞 = 0, with the maximum divergence observed for Γlc = 3.0, Γcal = 0.0. This is

the case for which we observe maximum amount of phase-separation (𝑆 (0) ≈ 206) in the gel (at

𝜂𝑐 = 0.03).

Fig. 4.5 show the total number of colloid-linker and cap-linker bonds formed separately, for

each of the cases described above. Presence of caps reduces the number of effective colloid-

linker bonds, by binding to the linker ends. As the cap-to-linker ratio is increased to Γcal = 1.0, as

compared to the case of no caps, the number of linker-colloid bonds falls down drastically, and on

further increasing the cap concentration (Γcal = 2.0), the linkers get almost completely exhausted

by the caps, thus rendering them ineffective to form many bridging bonds between colloids. For

Γcal = 2.0, we also find that on increasing Γlc from 1.5 to 3.0, the difference between the number of

cap-linker and colloid-linker bonds steadily increases. These observations are also concomitant

with the histograms showing the distribution of the number of free colloid patches (at the final

time point of simulation), for all these cases (Fig. 4.6). For Γlc = 3.0, the clearest differences are

observed, on moving from left to right, we find that the distribution with most number of colloids

having 0 free patches left (indicating all patches are bound to linkers, when no caps are present)

changes to a distribution where colloids with 4 and 5 free patches are the most in number (for

Γcal = 2.0).

Lastly, we construct phase diagrams (Figs. 4.8 and 4.9) in the (𝜂𝑐, Γlc) plane, for the 3 different

cases of cap concentration (Γcal = 0.0, 1.0, 2.0), to quantify the phase separation in these gels. The

color-map in these phase diagrams represents the value of 𝑆 (0) obtained for the given choice(s)

of (𝜂𝑐, Γlc). These values are also indicated in Tables 4.1, 4.2 and 4.3. In Fig. 4.8, the yellow region

in the top right hand corner of the diagram indicates phase-separation in the gels (𝑆 (0) > 10),

whereas dark blue regions as the bottom left do not (𝑆 (0) < 5). For both the phase diagrams

shown in Fig. 4.9, neither of the conditions demonstrate any phase separation (since themaximum

𝑆 (0) out of all these cases is only ≈ 1.7).
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0.0 1.0 2.0

Figure 4.4: Phase diagram of simulation snapshots for a system of colloidsmixedwith linkers (in presence
or absence of cap molecules) at the final time point of the simulation in the (Γlc,Γcal) plane for 𝛽𝜀 = 20.0
and 𝜂𝑐 = 0.03. Γcal = 0.0 indicates the presence of no cap molecules (only linkers present). The system
sizes in all these cases are different, due to variable number of linkers and cap molecules being present.
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Figure 4.5: Total number of dynamic bonds formed as a function of the simulation time, with the number
of colloid-linker and cap-linker bonds plotted separately — for a system of colloids mixed with linkers (in
presence or absence of cap molecules). All plots shown here correspond to varying linker-colloid and
cap-linker ratios (Γlc,Γcal), for a fixed 𝛽𝜀 = 20.0 and 𝜂𝑐 = 0.03. Γcal = 0.0 indicates the presence of no cap
molecules (only linkers present). The maximum possible number of dynamic bonds (the upper limit of the
y-axes) are different when Γlc varies, due to variable number of linker molecules. Error bar(s) correspond
to standard deviation(s) computed from three repeat simulations for each condition.
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Figure 4.6: Histograms showing the distribution of number of free colloid patches at the final time point
of the simulation — for a system of colloids mixed with linkers (in presence or absence of cap molecules).
All histograms shown here correspond to varying linker-colloid and cap-linker ratios (Γlc,Γcal), for a fixed
𝛽𝜀 = 20.0 and 𝜂𝑐 = 0.03. Γcal = 0.0 indicates the presence of no cap molecules (only linkers present).
The histograms were generated from the combined data of three repeat simulations for each condition,
respectively.
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Figure 4.7: The colloid partial static structure factor 𝑆 (𝑞) (averaged over the final 20 frames of simulation)
plotted against the wave-vector 𝑞 — for a system of colloids mixed with linkers (in presence or absence of
capmolecules). All the plots shown here correspond to varying linker-colloid and cap-linker ratios (Γlc,Γcal),
for a fixed 𝛽𝜀 = 20.0 and 𝜂𝑐 = 0.03. Γcal = 0.0 indicates the presence of no cap molecules (only linkers
present). Error bar(s) correspond to standard deviation(s) in the 𝑆 (𝑞) values computed from three repeat
simulations for each condition. A diverging 𝑆 (𝑞) value at zero wave-vector is indicative of prominent
phase separation (> the threshold of 𝑆 (0) = 10).
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Figure 4.8: Phase diagram for colloids mixed with linkers (no capping molecules present) at the final time
point of the simulation in the (𝜂𝑐 ,Γlc) plane for 𝛽𝜀 = 20.0 and Γcal = 0.0. The ‘viridis’ color-map illustrates
the extrapolated colloid partial structure factor to zero wave-vector, denoted as 𝑆 (0), derived from the
simulations. Large values of 𝑆 (0), typically above a threshold value of 10, indicate phase separation in the
gels (in this case, the yellow region in the top right corner of the diagram).

A B

Figure 4.9: Phase diagram for colloids mixed with linkers and free capping molecules at the final time
point of the simulation in the (𝜂𝑐 ,Γlc) plane for 𝛽𝜀 = 20.0 and for (A) a cap-to-linker ratio Γcal = 1.0 and (B) a
cap-to-linker ratio Γcal = 2.0, with the color map indicating the 𝑆 (0). In presence of the capping molecules,
no phase separation is typically observed since in both the cases (A) and (B), the highest values of 𝑆 (0)
are always < 10.
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4.6 Conclusions

In an integrated coarse-grained modeling platform developed in this work to study colloidal

gelation, we treat the building blocks as patchy colloids with discrete binding sites [189, 190,

292, 293] capable of dynamic binding or unbinding [50]. This approach, employing dynamic

bonding among the components, facilitates the design of responsive materials [28, 58, 77]. These

colloids can form networks through a linker-mediated strategy [189, 286, 296, 298], involving

the reversible connection of functionalized macromers or nanocrystals by bifunctional molecules

[302]. Alternatively, they can be implicitly modeled as bonds between binding sites, exhibiting

the properties of a semiflexible polymer [401] chain. The dynamic rates of binding and unbinding

also confer kinetic leverage, thereby impacting the dynamics and structure of these gels. [402–

404].

The current simulation setup involves explicit bifunctional linkers that facilitate the bonding

of colloids through patchy binding sites [189, 190, 292, 293, 298]. However, our goal is to de-

velop an implicit linker representation similar to our mobile binder coarse-grained model. One

major objective is to generate theoretical and experimentally validate phase diagrams for linker-

mediated functionalized macromer [299–301, 461, 462] and nanocrystal [189, 190, 286–298] net-

works with both symmetric and asymmetric linkers.

These phase diagrams will highlight regions of the parameter space conducive to forming

arrested-phase-separation [402–404] and equilibrium gels. We want to study how tuning the

ratio of active to inactive ligands (represented in simulations by the patches on the colloids),

as well as altering the concentration of caps [296, 298, 303], can affect the phase behavior. The

control of exchange kinetics for caps and linkers will lead to gel networks with diverse structures,

depending on whether they are under thermodynamic or kinetic control regimes. Additionally,

we aim to control the structure and dynamics of gels by leveraging the linker length and rigidity

[292]. Effect of using asymmetric linkers, that can inhibit any linker self-looping, can also be
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tested next in our simulation model.

Currently, in our simulation model, we have the cap molecules of the same particle type as the

colloid patches and so it is hard to investigate the effects of varying the kinetic rates of cap-linker

binding and patch-linker binding separately. This can be rectified once we make certain changes

to our dynamic binding / unbinding plugin. This is one of the major drawbacks of the current

model.

4.7 Detailed simulation parameters

All important simulation parameters are enumerated in the table 4.4.
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Table 4.4: A table containing all the general simulation parameters

Description (Symbol) Value in HOOMD units
MD timestep (d𝑡 ) 0.0005
Dimensionality (𝑑) 3
Temperature (𝑇 ) 1.0
Number of simulation steps run (𝑛steps) 1 × 108
Diameter of colloid (𝜎𝑐 ) 2.5
Diameter of patch (𝜎) 0.5
Diameter of each linker segment (𝜎) 0.5
Number of patches in a colloid (𝑁patch) 6
Number of colloids (𝑁𝑐 ) 1000
Linker-to-colloid ratio (Γlc) 1.5-3.0
Cap-to-linker ratio (Γcal) 1.0-2.0
Colloid volume fraction (𝜂𝑐 ) 0.002-0.1
Mass of colloid 125.0
Mass of patch 1.0
Mass of each linker segment 1.0
Drag coefficient (𝛾 ) 0.1
FENE-WCA bond parameters:
(i) 𝑟0 1.5
(ii) 𝜀WCA 1.0
(iii) 𝜎WCA 1.0
(iv) Spring constant 𝑘𝑝 30.0
Cosine-squared angle potential parameters:
(a) Rest angles-
(i) 𝜃 linker0 for linker angles 3.1415
(ii) 𝜃patch0 for patch angles 1.5708
(b) Angle spring constants-
(i) Linker angle flexibility 𝜅 0.0
(ii) 𝑘patch 300.0
Shifted WCA potential parameters:
(i) 𝜀WCA 1.0
(ii) 𝜎WCA 1.0
Binding affinity (𝜀) for dynamic binding 20.0
Initial rate constant for binding (𝑘 initon ) 200.0
Rate constant for binding after melting (𝑘melt

on ) 0
Melting Temperature (𝑇melt) 2.0
Inflexion steepness parameter (𝛼) 200.0
Dynamic bond rest length (𝑙dyn) 0.0
Dynamic bond spring constant (𝑘dyn) 20.0
Dynamic bonding minimum distance (𝑙min) 0.0
Dynamic bonding maximum distance (𝑙max) 0.4472
Dynamic bond checksteps (𝑛) 10
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Chapter 5

Molecular dynamics simulations to study

mesoscale molecular assembly in the

active, crowded cytoplasm

This chapter is adapted from the work published as [51].

5.1 Abstract

The mesoscale organization of molecules into membraneless biomolecular condensates is

emerging as a keymechanism of rapid spatiotemporal control in cells [463]. Principles of biomolec-

ular condensation have been revealed through in vitro reconstitution [306]. However, intracel-

lular environments are much more complex than test-tube environments: They are viscoelastic,

highly crowded at themesoscale, and are far from thermodynamic equilibrium due to the constant

action of energy-consuming processes [305]. We developed synDrops, a synthetic phase separa-

tion system, to study how the cellular environment affects condensate formation. Three key
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features enable physical analysis: synDrops are inducible, bioorthogonal, and have well-defined

geometry. This design allows kinetic analysis of synDrop assembly and facilitates computational

simulation of the process. We compared experiments and simulations to determine that macro-

molecular crowding promotes condensate nucleation but inhibits droplet growth through coales-

cence. ATP-dependent cellular activities help overcome the frustration of growth. In particular,

stirring of the cytoplasm by actomyosin dynamics is the dominant mechanism that potentiates

droplet growth in themammalian cytoplasm, by reducing confinement and elasticity . Our results

demonstrate that mesoscale molecular assembly is favored by the combined effects of crowding

and active matter in the cytoplasm. These results move toward a better predictive understanding

of condensate formation in vivo.

5.2 Introduction

Liquid-liquid phase separation (LLPS), has emerged as a ubiquitous mechanism for driving

formation of biomolecular condensates inside the cell that are dynamic and can form and dissolve

on relatively short timescales; for example, stress granules [464] transiently form in response to

potentially detrimental changes in the environment such as temperature shock. Phase separation

occurs when molecules exceed their solubility limit and condense into a new phase [306]. LLPS

inside the cell is strongly affected by the environment - crowded environments can both drive

nucleation and frustrate the growth (coalescence) of droplets, while active environments can help

overcome this frustration.

Cells are highly crowded, with macromolecules excluding 20% - 30% of cellular volume in

eukaryotic cells and 30% - 40% in prokaryotic cells [304, 465]. This high excluded volume can

inhibit molecular motion (and thus disfavor diffusion-limited reactions), but on the other hand

can entropically favor assembly through depletion-attraction forces[466, 467]. Binding reactions

are entropically unfavorable, because the reactants become more ordered. However, when two
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or more components bind one another, they take up less space. In crowded environments, this

gives more space for the crowders to move, thus increasing their entropy.

Themajority of cytoplasmic volume is taken up bymesoscale (10 - 1000 nm diameter) particles

[304]. Mesoscale systems are too small to “coarse grain” without losing crucial features, and too

large to completely understand themassive complexity of every component. The effects of crowd-

ing strongly affect the behavior of mesoscale particles and assemblies, while having less impact

on nanoscale processes because nanoscale particles canmove relatively freely betweenmesoscale

crowders, but mesoscale particles cannot. Studies have shown that the decreased motion due to

macromolecular crowding can change biochemical reaction kinetics, protein conformations, and

motor functions[467–469].

The cell also contains elastic networks that constrain and organize the cell interior. These

include the actomyosin cytoskeleton in the cytoplasm [470] and chromatin in the nucleus[471].

The presence of these networks and the high concentration of particles together make the in-

tracellular environment viscoelastic. This contrasts with simple buffer solutions, which are only

viscous.

Finally, cells are non-equilibriumopen systems, and use adenosine triphosphate (ATP)-dependent

cellular activities to maintain a non-equilibrium steady state by exchanging energy, information

and material with the extracellular environment, thereby locally reducing entropy [472]. Overall,

the intracellular environment is highly complex, and its impact on the assembly of membraneless

biomolecular condensates remains largely unexplored.

The assembly of membraneless biomolecular condensates bridges length scales between the

nanoscale and mesoscale, where nanometer diameter molecules come together to form higher-

order structures of tens to thousands of nanometers in diameter [473]. This wide range of length-

and time-scales makes it difficult to predict how the crowded, active cellular environment will

affect biomolecular condensate formation. Several studies have focused on the impact of elastic

mechanical properties on condensate growth [474–477]. For example, elastic chromatin mechan-
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ics has been shown to frustrate the growth of nuclear condensates [476, 477]. However, the

combined impacts of macromolecular crowding, elastic networks, and non-equilibrium cellular

activities on condensate formation are less well understood.

It is difficult to derive general physical principles from the study of endogenous condensates

because these systems are formed through complex coacervation of many molecules. Further-

more, these components are often dynamically altered by posttranslational regulation, the details

of which are typically unknown. Thus, when perturbing intracellular environments, it is difficult

to fully attribute structural changes in endogenous condensates to only biophysical cues, since

biological functional changes associated with perturbations can also lead to structural changes

in endogenous condensates. To overcome these issues, an orthogonal synthetic intracellular con-

densate system called synDrops was developed experimentally. synDrops adapted a previous

approach to create a molecular condensate of well-defined geometry [478], but adds the ability

to chemically induce the interaction of components.

synDrop formation was successfully induced experimentally in both budding yeast S. cere-

visiae cells and mammalian cervical cancer HeLa cells. Complementary to the experimental sys-

tem, we also developed two independent agent-based coarse-grained molecular dynamics models

to simulate synDrops within cellular environments from first principles. Combining experiments

and simulations, we show that macromolecular crowding facilitates the nucleation process while

inhibiting the growth phase of condensate dynamics. However, ATP-dependent active processes

in the cytoplasm prevent kinetic trapping of larger assemblies and thus promote coarsening and

fusion of individual droplets. In conclusion, we found that the assembly of mesoscale biomolec-

ular condensates is favored by the crowded and active cellular environment. Our hypothesis is

that translation and motion of ribosomes increase local effective temperature and thereby cel-

lular activity, while actomyosin contractility overcomes kinetic trapping at longer length- and

time-scales.
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5.3 Description of the experimental synDrop system

In collaboration with Emmanuel Levy, the Holt Lab (NYU Langone Health) designed an in

vivo synthetic droplet (synDrop) system to study the biophysical properties of LLPS. SynDrops

are composed of two protein components, each of which has three modular domains. The design

was based on the Flory-Stockmeyer theory [479], which governs polymer network growth. Mul-

tivalency is essential for the formation of mesoscale condensates through phase separation [480–

484]. Homomultimerizing domains were used to create multivalency in the system (Fig. 5.1). The

first component contains a hexamerization domain to create multivalency (PDB: 3BEY), an in-

ducible interaction domain and a blue fluorescent protein (BFP). The second component contains

a long coiled-coil dimerization domain for multivalency (PDB: 4LTB), an inducible interaction

domain, and a green fluorescent protein (GFP). The two components interact in trans through

two halves of an inducible heterodimeric binding interaction, enabling kinetic analysis. Impor-

tantly, the dimerization domain is a 19 nm long, stiff, antiparallel coiled-coil. Due to the structural

rigidity and the length of the coiled-coil in the dimer, and because the distance between inter-

action surfaces on the hexamer is approximately 6 nm, self-closed structures are prohibited (i.e.

both dimer domains cannot bind to a single hexamer). Thus, geometric constraints strongly favor

the expansion of synDrop molecular networks that form by spanning alternatively between the

two components (as shown in Fig. 5.1 (bottom)). This greatly simplifies simulation and physical

analysis compared to other synthetic systems [482–484].

The inducible binding domains are the plant GAI (Gibberellin insensitive DELLAproteins) and

GID (Gibberellin Insensitive Dwarf 1) domains. These domains undergo a heterotypic interaction

that is potentiated in the presence of the plant hormone Gibberellin (GA) [485] (Fig. 5.1). GAI is

truncated to a minimum dimerization domain [486]. Adding GA increases the affinity between

the two synDrop components and triggers synDrop formation.
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Figure 5.1: synDrops, composed of two proteins, is a synthetic system designed in vivo via experiments,
and enables the analysis of condensate formation kinetics. It is amenable to modeling via coarse-grained
simulations. The top part of the figure shows the gene and crystal structures of the two components.
Each protein has three domains: an oligomerization domain (3BEY: Hexamer or 4LTB: Dimer), an inducible
interaction domain (GAI or GID) and a fluorescent protein (BFP or GFP). Gibberellin (GA) induces binding
between GAI and GID favoring the formation of a mesoscale molecular network (bottom schematic).
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5.4 Coarse-grained simulation model to study mesoscale

assembly in the synDrop system

Our in vivo system enables detailed analysis of mesoscale assembly, but cannot easily report

on the microscopic protein interactions that underpin this process. Therefore, we developed an

independent agent-based molecular dynamics (MD) platform and also developed a new graph-

theory network to provide complementary information in silico and also quantitatively describe

LLPS. The simulation setup used a HOOMD-blue engine [334, 335] combined with a dynamic

bonding plugin that we previously developed [50] (Fig. 5.2 and 5.3). In MD simulations with

HOOMD-blue, wemodeled the hexamer as a single sphere of diameter 12.6 nmwith six uniformly

distributed binding sites, and the dimer as a rod-like structure formed from three sphereswith two

binding sites positioned on opposing sites of the two outer spheres (Fig. 5.2). The inner sphere has

a diameter of 11.7 nm and the two outer spheres are slightly bigger in size, each having a diameter

of 13.45 nm. The binding sites on the ends of the hexamers and the rods have a diameter of 2 nm

each. The sizes of these simulated structures were chosen based on crystal structure data from the

Protein Data Bank (PDB) for the individual protein components within each protein complex. In

addition, we included a third agent to mimic ribosomes, which are the dominant macromolecular

crowders in the cytoplasm. This agent was a 30 nm diameter sphere with no binding interactions.

Binding occurs between a hexamer and a dimer through complementary interaction points at

the end of these objects. The formation of synDrops was simulated with or without crowders

under equilibrium conditions (Fig. 5.3). There is a discrepancy in the time scales of synDrops

formation between simulations and experiments. This could be due to various factors, such as the

significantly smaller droplet sizes in simulations – approximately one-tenth the radius of those

in the experimental system – and the simplified assumptions inherent in coarse-grained models

representing cellular systems.In summary, we have developed the synDrop system both in cells
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and in silico, allowing us to address how the intracellular environment affects the assembly of

mesoscale condensates.

5.5 Simulation Methods

An agent-based molecular dynamics (MD) simulation approach has been developed to study

the synDrops system. MD Simulations were performed using HOOMD-blue v2.9.6 [334, 335].

The HOOMD-blue model uses GPU acceleration to increase simulation speeds, enabling us to

investigate cluster formation dynamics over much longer timescales (>10x), especially at high

molecular density. We use coarse-grained (CG) representations of each synDrops component—(i)

a sphere with six rigid evenly distributed binding sites to represent the hexamer and (ii) 3 spheres

in a rod-like arrangementwith two complementary binding sites at two ends to represent the rigid

coiled-coil dimer. We have 1170 dimers and 390 hexamers within a cubic box with 860 nm sides

(maintaining a 3:1 stoichiometric ratio of dimers and hexamers to have 1:1 ratio of complementary

binding sites). This results in concentrations of 3 𝜇𝑚 for dimers and 1 𝜇𝑚 for hexamers, similar to

our estimated values in experiment. Finally, 20 spheres of diameter 40 nm are added to mimic the

trace presence of GEMs (Genetically Encoded Multimeric nanoparticles) [304] in the experiment

(to enable rapid characterization of the mesoscale physical properties of the cytoplasm).

For the simulations used to determine the dissociation constant (𝐾𝑑 ), we set up a monomeric

system (where the dimers and hexamers are in a 1:1 stoichiometric ratio), we reduced the available

(active) binding sites of two components from 6 and 2 to 1 and 1 each. The number of hexamers

and dimers used are 200 each for these simulations (enclosed inside a cubic box with 400 nm

sides), as opposed to 390 and 1170 respectively for the synDrop MD simulations described above.

Here, each hexamer has only 1 active binding site and 5 inactive binding sites. Similarly, each

dimer has 1 active and 1 inactive binding site (as shown in Fig. 5.4). Dynamic bonding is only

allowed between active binding sites on the hexamer and dimer.
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Macromolecular crowders
mimicking ribosomes

15 nm

Hexamer Dimer

6.3 nm 6.73 nm

Figure 5.2: Schematic of coarse-grained molecular dynamics model for synDrop assembly. The hexamer
component is represented by a sphere with six uniformly distributed binding sites; the dimer component
is represented as a rod-like structure formed from three overlapping spheres with two binding sites posi-
tioned on opposite ends. A third component with no binding sites mimics ribosomes as macromolecular
crowders.
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30% volume
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Simulation time:

200 nm

Figure 5.3: Representative images (snapshots) from HOOMD-blue MD simulations of synDrops system
over time without crowders (top) and with 30% volume fraction of crowders (bottom). The zoomed-in
image under 30% volume fraction condition shows the formation of a large cluster.
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Hexamer (with only 1 active binding site) Dimer (with only 1 active binding site)

      

Figure 5.4: For the simulations run to determine 𝐾𝑑 , the hexamer component has only 1 active binding
site (grey) and 5 inactive sites (light green); the dimer component similarly has only 1 active binding site
(grey) and 1 inactive site on the opposite end (light green).

In addition, spherical components of various sizes without any binding site are added in the

system to mimic the crowded cellular environment (Fig. 5.2). For the initial configuration, the

CG components are arranged in a lattice whose positions are generated from a CsCl-type lattice

generator using the ‘lattice’ module from the ASE (Atomic Simulation Environment) [487] pack-

age. We ran MD simulations with varying volume fractions of ribosomes to study the effect of

crowding in synDrops assembly. We also varied the effective temperatures that only govern the

ribosome movements to study how cellular activities affect synDrops assembly.

Binding occurs through complementary interaction sites between dimers and hexamers. We

modeled such covalent interactions by developing an open-source C++ plugin, called the Dy-

namic Bond Updater [50] in HOOMD-blue that builds upon a model for epoxy binding developed

in [336]. The Bond Updater, for every 𝑛 steps during the MD simulation, stochastically adds or

removes dynamic bonds. Binding events occur with a fixed probability 𝑃on at a critical distance

𝑑bind between interaction sites, while unbinding events occur with a probability 𝑃off . Using our

dynamic bonding framework, we thus have controls over our binding and unbinding rate con-
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stants 𝑘on and 𝑘off respectively; the bond affinity 𝜀 is defined by

Δ𝐺 = 𝑘B𝑇 ln

(
𝑘on

𝑘off

)
≡ 𝜀 (5.1)

and can be increased by lowering the unbinding rate constant 𝑘off . We ensure that the dy-

namic bonding model satisfies detailed balance using a particular Metropolis-like criterion [118,

193, 337], so that the system moves towards an equilibrium ensemble as bonds form and dis-

solve dynamically. An important point to note here is that for the synDrop MD simulations, we

have explicit dependence of the binding/unbinding rates on temperature turned off. The only

dependence on temperature arises in the Metropolis factor. We use the cell neighbor list [347] to

accelerate nonbonded agents’ calculations and possible bonding pairs’ constructions.

Interactions between crowders and synDrops proteins occur via a soft repulsion potential [50]

defined by

𝑈soft
(
𝑟
)
=


𝜀soft

[
1 −

(
𝑟
𝑟cut

)4]
if 𝑟 < 𝑟cut

0 if 𝑟 ≥ 𝑟cut

(5.2)

, where smoothing was applied using HOOMD-blue’s XPLOR [335] smoothing function. The

soft potential was implemented by using HOOMD-blue’s tabulated potential option (with 1000

interpolation points between 𝑟min = 0 and 𝑟max = 1.5𝜎 , where 𝜎 is the sum of the radii of the

particles). Here, 𝑟on is chosen as the point at which the smoothing starts. We set 𝑟on = 0.95𝑟cut

for our simulations, and 𝑟cut = 𝜎 . There is no soft repulsion between complementary binding

interaction sites on hexamers and dimers, where we implemented a Lennard-Jones (LJ) [356–359]

attraction between the hexamer and dimer rigid bodies, with a cut-off distance equal to 2.5𝜎 .

All objects in the system undergo thermal fluctuations using Langevin [345] dynamics, with

drag forces proportional to the diameter. The dimensions of every CG component approximate

their respective crystal structures. Within our MD simulations, we typically use periodic bound-
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ary conditions (PBC). However, we also have the option of adding Lennard-Jones ‘walls’ to con-

fine our system in a ‘closed box’. For volume fractions up to 35%, we are able to place ribosomes

in the box without overlaps through random sequential insertion. For higher concentrations, we

first set up the initial simulation box size using lengths of 1400 nm on a side (4.3x the target vol-

ume) and the appropriate number of ribosomes, and then compress the system to the target size of

860 nm linearly over 5×105 simulation steps (using the hoomd.variant module of HOOMD-blue),

and finally turn on dynamic bonding in the system to record synDrops dynamics.

To study how non-thermal cellular activity [488, 489] impacts formation of synDrops via

MD simulations, we assign the crowders a different effective temperature 𝑇𝑐 from the rest of the

system, which can be achieved through separate Langevin ‘thermostats’ in HOOMD-blue. We

ran a different set of MD simulations at a fixed volume fraction of ribosomes (= 30%) but varying

the crowder effective temperatures 𝑇𝑐 .

All important simulation parameters are enumerated in the table 5.1.

5.6 Results

5.6.1 Macromolecular crowding promotes nucleation but inhibits

droplet growth

From experiments, it was observed that droplets initially nucleate locally but do not grow

substantially, followed by a growth phase where droplet sizes become larger, mainly through

droplet coalescence. Thus, the synDrops system forms droplets by nucleation and growth, which

has been suggested as the most common mechanism of endogenous condensate formation [490,

491]. Also, it has been established through experiments that macromolecular crowding promotes

synDrop nucleation but inhibits growth, in both human and yeast cells. The mechanisms under-

lying the inhibition of droplet growth by macromolecular crowding are important to understand
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Table 5.1: Table of parameters for the MD Simulations using HOOMD-blue

Parameter (with description) Value used in simulations
Simulation timestep (d𝑡 ) 0.002
Crowder Temperature (𝑇𝑐 ) relative to 𝑇room = 298.15𝐾 0.5-2.0
Simulation box length (in nm) 860 (for the actual system)

400 (for the monomeric system)
Volume fraction of ribosomes (𝜙crowder) 0.0-0.5
Initial box length (in nm) for compression (𝜙crowder > 0.35) 1400
Number of rod proteins 1170 (for the actual system)

200 (for the monomeric system)
Number of hexamers 390 (for the actual system)

200 (for the monomeric system)
Number of GEMs 20
Number of binders on each hexamer 6
Number of binders on each rod 2
Diameter of inner rod particle (in nm) 11.7
Diameter of the two outer rod particles (in nm) 13.45
Diameter of hexamer (in nm) 12.6
Diameter of ribosome (in nm) 30.0
Diameter of GEM (in nm) 40.0
Diameter of binder on rods and hexamers (in nm) 2.0
Friction coeff. to multiply by particle diameter 0.001
Maximum binding distance (𝑑bind) (in nm) 1.0
Repulsion strength for soft quartic potential (in 𝑘B𝑇 ) 500
𝜀 for Lennard-Jones potential (in 𝑘B𝑇 ) 0
Rate constant for dynamic binding 𝑘on (in units of 1/𝜏) 50.0
Rate constant for dynamic unbinding 𝑘off (in units of 1/𝜏) 0.001 (also 0.015, 0.006, 0.0003,

0.0001, 0.000015, 0.000002,
0.0000001, 0.0000000007)

Binding affinity 𝜀 (in 𝑘B𝑇 ) 10.8 (also 8.1, 9.0, 12.0, 13.1,
15.0, 17.0, 20.0, 25.0)

Dynamic bond rest length (𝑙dyn) 2.0
Dynamic bond spring constant (𝑘dyn) 20.0
Dynamic bond check steps (𝑛) 10

in this context. Droplets can grow in two ways: the first is through droplet coalescence [492] and

the other is through Ostwald ripening [493]. However, droplet coalescence has been suggested

as the dominant mechanism for droplet growth in biological systems [476]. In this mechanism,

the rate of droplet growth depends on the collision rate between two smaller droplets, which in

turn depends on the diffusivities of these droplets [476, 492]. A hypothesis was therefore made
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Figure 5.5: Illustration of graph-theory based analyses on cluster formations, showing the cluster fusion
process as an example. Extracted fromMD simulation data, the positions and binding information of syn-
Drop components are utilized to generate a distance matrix reflecting the topological shortest distances
between each component pair. Through clustering this matrix, the clusters are identified both spatially
and represented in a clustergram (graph representation of the clusters).

that macromolecular crowding inhibits droplet growth by reducing droplet diffusivities.

To validate this hypothesis further and also to investigate molecular details that are not easily

accessible from experimental data, an agent-based coarse-grained Molecular Dynamics simula-

tion model was employed to simulate synDrops. The well-defined structures and binding inter-

actions between the two synDrop components enabled us to quantify droplet network structures

with graph theory based analyses (Fig. 5.5). Unless otherwise specified, the concentrations of

dimer and hexamer synDrop components remain at 3𝜇𝑀 and 1𝜇𝑀 , respectively, in the following

simulations. Here, we defined each synDrop component as a node and the bond between two

components as an edge. We calculated the topological shortest distances between each pair of

components and mapped out bond connectivity to define each molecular cluster. The distance

matrix from this analysis was then used for hierarchical clustering [349]. In the initial step, each
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data point is treated as an individual cluster, and the process iterativelymerges the closest clusters

until a predefined stopping criterion is met. Within the resulting clustergram, squares along the

diagonal correspond to clusters of interactingmolecules. Each pixel on the x and y axes represents

an interaction between two individual molecules in the simulation system and is colored accord-

ing to the topological distance between them (e.g., molecules that are directly connected are dark

blue, while molecules that are indirectly connected through a chain of interactions are a lighter

hue). Blank pixels indicate that there is no path connecting the two corresponding molecules

(Fig. 5.5, 5.6). Fig. 5.5 shows the process of cluster fusion between two different time points in a

simulation as an example to demonstrate how graph theory based analyses can be used to show

the cluster formation. Squares on the diagonal correspond to condensates: The red and orange

clusters circled in the simulation snapshot (Fig. 5.5, left) and in the 3D graph (Fig. 5.5, middle)

were identified from the blocks of interactions highlighted by red and orange in the clustergram

(Fig. 5.5, right)

When there were no crowders in the system, there was very limited cluster formation (Fig. 5.6

- top). In contrast, large clusters formed when a 30% volume fraction of crowder was added to

mimic the excluded volume typically present in the cytoplasm, suggesting that macromolecular

crowding can be crucial to nucleate and stabilize synDrop mesoscale networks (Fig. 5.6 - middle).

However, when we further increased the crowder volume fraction to 50% (mimicking crowder

concentrations in osmotically compressed cells), we observed a larger number of smaller droplets

(Fig. 5.6 - bottom). Similar results were also obtained by tracking the number of molecules within

the largest cluster (Fig. 5.7 - left). The initial growth rate of average cluster size increased with

crowder volume fraction (Fig. 5.7 - right), suggesting that nucleation was promoted by macro-

molecular crowding, as indicated by the increasing values of the exponent 𝛼 obtained from a

power law fit of the initial growth rate (from 0% to 30% to 50%). However, under high crowding

conditions (e.g., 50% volume fraction) cluster size was limited at late time points. These results

are consistent with our experimental data that physiological crowding (∼ 30%) appears to be op-
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Figure 5.6: Graph theory network analyses (left) of cluster formation at early and later times with cor-
responding simulation renderings at later times (right), for three different crowder fractions (0%, 30% and
50%, from top to bottom)
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timal for the formation of large synDrops. Molecular crowding plays contrasting roles in droplet

nucleation and growth. While it is crucial for droplet nucleation, it also inhibits droplet growth.

To further investigate the molecular basis of frustrated synDrop growth in the presence of ex-

cessivemacromolecular crowding, we plotted the average diffusivity for each cluster as a function

of the cluster size. We found that diffusivities decreased as a function of cluster size as expected,

and were reduced overall when crowder volume fractions were increased (Fig. 5.8), consistent

with our hypothesis that crowding frustrates coalescence by reducing cluster diffusivities. This

effect is particularly pronounced under conditions of excess macromolecular crowding.

Finally, we investigated the molecular basis of the promotion of droplet nucleation by macro-

molecular crowding. We hypothesized that increasedmacromolecular crowding could favor bind-

ing interactions, as previously reported [468]. To assess this idea, we performed MD simulations

on a simplified monomeric systemwhere the two synDrop components (hexamers and rods) each

had only a single available (active) binding site (1,1), as opposed to (6,2). The rationale of using

a monovalent system here rather than the full synDrop system was to exclude other factors that

affect calculations of chemical bond properties, such as changes in coordination numbers for hex-

amers and dimers, which increase with crowding. We then extracted the effective dissociation

constant (𝐾𝑑 ) under different volume fractions of crowders by quantifying the number of bonds

formation at equilibrium. The effective 𝐾𝑑 was indeed reduced (affinity was increased) in simu-

lations with increased crowder volume fractions, performed for an intermediate binding affinity

case (𝜀 = 10.8𝑘B𝑇 ) (Fig. 5.9). Calculation of effective 𝐾𝑑 and 𝑘off can help in determining the

effective binding rate (𝑘on), which is 𝑘off divided by 𝐾𝑑 .

In conclusion, a combination of in vivo experiments and simulations helped in jointly sup-

porting the model that macromolecular crowding promotes droplet nucleation by reducing the

effective 𝐾𝑑 for chemical bond formation, but also inhibits droplet growth by reducing droplet

diffusivity, therefore kinetically frustrating coalescence of small droplets into larger structures.

147



t (s) t (s)

α = 0.12

α = 0.20

α = 0.43

0%

30%

50%

C
ro

w
de

r v
ol

um
e 

fr
ac

tio
n

La
rg

es
t c

lu
st

er
 s

iz
e 

(#
 m

ol
ec

ul
es

)

Av
g.

 c
lu

st
er

 s
iz

e 
(#

 m
ol

ec
ul

es
)

Figure 5.7: Increasing macromolecular crowding promotes synDrop nucleation but inhibits growth or
coalescence, shown here for three different crowder fractions (0%, 30% and 50%, from top to bottom).
(Left): Number of molecules within the largest cluster over time from five replicate simulations, denoted
by different colors, and (Right): Averaged cluster size (number of molecules) over time from five replicate
simulations. The dashed line represents the power law fit for the initial 0.5 s, exponent denoted as 𝛼 . Error
bars are standard deviation (SD) of the averaged values of the five repeats.
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Figure 5.8: Increasing macromolecular crowding promotes synDrop nucleation but inhibits growth or
coalescence. Cluster diffusivity versus cluster size (number of molecules) shown here on the log-log scale,
for three different crowder fractions (0%, 30% and 50%, from left to right) . The black data points represent
the mean of averaged values from five repeats, and the error bars correspond to the SD among these
averaged values. The dashed black line represents the linear fit on the log-log scale and the fitted slope is
labeled as the exponent.

5.6.2 Non-thermal activity inside the cells promotes droplet growth

We wondered if features of the cytoplasmic environment other than macromolecular crowd-

ing could impact synDrop assembly. In addition to being crowded, the cytoplasm is also far

from equilibrium due to ATP-dependent activities. Cellular metabolism was previously shown to

strongly affect the motion of mesoscale particles [494]. We therefore hypothesized that ATP-

dependent cellular activities might affect synDrop formation by promoting their motion and

therefore driving coalescence of small droplets into larger structures.

It was observed in experiments that cellular active matter is crucial for both synDrop diffu-

sivity and growth in both yeast and HeLa cells. The dynamics of the actomyosin cytoskeleton

are an important source of cellular motion [495]. It was therefore hypothesized that actomyosin

contractility might agitate the cytoplasm and increase synDrop motion. It was eventually found

that actomyosin dynamics is the dominant mechanism that increases mesoscale diffusivity in the

cytoplasm of mammalian cells and is required for the formation of large synDrops.

An important point to understand in this context is whether reduced diffusivity of synDrops is
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Figure 5.9: Effective dissociation constants (𝐾𝑑 ) of a simplified monovalent system as a function of crow-
der volume fraction 𝜙crowder, for a binding affinity of 𝜀 = 10.8𝑘B𝑇 . Error bars are standard deviations
calculated from five repeats for a given crowded volume fraction.
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 Crowder volume fraction = 0.0  Crowder volume fraction = 0.1

 Crowder volume fraction = 0.2  Crowder volume fraction = 0.3

 Crowder volume fraction = 0.4  Crowder volume fraction = 0.5

Figure 5.10: Number of dynamic bonds formed plotted against time (in seconds) for the simplified mono-
valent system MD simulations (binding affinity of 𝜀 = 10.8𝑘B𝑇 ), for 6 different crowder volume fractions
(0.0-0.5). The bond count at equilibrium 𝐵eq was extracted from the fit performed on the data (to an ex-
ponential growth function) for each of the cases (fits are shown by the red dotted curves).
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Figure 5.11: Analyses for MD simulations performed using HOOMD-blue keeping a constant 30% crow-
der volume fraction but varying crowder effective temperatures are shown here. Values of effective crow-
der temperatures are shown relative to room temperature in units of Kelvin: 0.5, 1, 1.1, 1.2, 2: Number of
molecules within the largest synDrop cluster over time from five replicate simulations, denoted by differ-
ent colors.

the main cause of growth inhibition upon ATP depletion, and from the experiments performed to

test this, it was concluded that increasing droplet local diffusivity was insufficient to rescue syn-

Drop growth. Additional ATP-dependent cellular activities are therefore, necessary to promote

synDrop growth.

We attempted tomodel the role of cellular active matter using ourMD simulations. To achieve

this, we used a simple approximation of altered environmental motion by adding frequency-

independent isotropic noise to vary the effective temperature of crowders [488, 489], while keep-

ing the temperature of the synDrop components constant. We observed a positive correlation

between the largest cluster size and the effective temperature of the crowders (Fig. 5.11). When

we plotted cluster diffusivity versus cluster size on a log-log scale, we observed individual cluster

diffusivities were slightly higher with higher effective crowder temperatures (Fig. 5.12). Further-

more, cluster diffusivity roughly decreased with cluster size as a power law: Diffusivity related

to temperature with a negative exponent (Fig. 5.12). This exponent was slightly less negative at

higher effective crowder temperatures (Fig. 5.13). However, this increase in cluster diffusivity was

relatively modest, implying that other factors may contribute more significantly to the increased

mesoscale assembly at higher crowder effective temperature, supporting the experimental results

within cells. In particular, we found the initial growth rate of average cluster size increased with
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Figure 5.12: Cluster diffusivity versus cluster size (number of molecules). The black data points are the
mean of five replicate simulations, error bars are SD, dashed black line is the linear fit in log space with
exponent (slope) labeled.

the effective temperature of crowders (Fig. 5.14, Fig. 5.15), which could potentially contribute to

the larger cluster sizes at higher crowder effective temperatures in MD simulations.

Given that coalescence dominates synDrop growth, the growth process is intrinsically linked

to droplet motion. Multiple intracellular factors can influence droplet motion, including macro-

molecular crowding, viscoelasticity, and poroelasticity [496]. Non-equilibrium ATP-dependent

cellular activities canmodify all of these factors. At small length-scales (< 100 nm), ATP-dependent

cellular activities may change the spatial distribution and dynamics of macromolecular crowders.

At larger length-scales (> 100 nm), cellular structures including membranes and the actomyosin

cytoskeleton, both of which undergo dynamic ATP-dependent fluctuations, have strong impacts

on mesoscale confinement and elasticity [495, 497]. Droplet trajectories were therefore examined

more closely in experiments to gain an insight into how longer-range confinement and elasticity

relate to synDrop growth. It was found that ATP-dependent activities reduce confinement in the

cytoplasm.

The experimental results are consistent with a model where the diffusivity of droplets is

influenced not only by macromolecular crowding [304] but also by additional factors that de-

fine longer-range confinement. The actomyosin cytoskeleton dynamics is the dominant ATP-

dependent activity that reduces confinement in mammalian cells. In addition to driving ATP-

dependent motion, the cytoskeleton also plays a critical role in determining cellular elasticity.
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Figure 5.13: Cluster diffusivity versus cluster size (number of molecules). Plot showing an overlay of
linear fitted lines in log space for four different effective temperature conditions.
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Figure 5.14: Analyses for MD simulations performed using HOOMD-blue keeping a constant 30% crow-
der volume fraction but varying crowder effective temperatures are shown here. Values of effective crow-
der temperatures are shown relative to room temperature in units of Kelvin: 0.5, 1, 1.1, 1.2, 2: Averaged
cluster size (number of molecules) over time from five replicate simulations. The dashed line represents
the power law fit for the initial 0.5 s, with the value of the exponent 𝛼 indicated. Error bars are standard
deviation (SD) of the averaged values of the five repeats.
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Figure 5.15: Averaged cluster size (number of molecules) over time from five replicate simulations. Plot
showing an overlay of power law fitted lines for all five effective temperature conditions.
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ATP-dependent cellular activities

Figure 5.16: Schematic of a model that can explain how ATP-dependent cellular activities may influence
droplet growth.

[470]. It was observed that either loss of ATP or inhibition of actomyosin dynamics increases

the elasticity of the mammalian cytoplasm. These results support a model in which the actin cy-

toskeleton promotes long-range structural rearrangements and thereby reduces elasticity and

confinement in the cytoplasm. The consequent increase in synDrop motion would promote

droplet growth through coalescence (Fig. 5.16).

5.6.3 Effect of binding affinity on the coalescence of droplets

We explored the impact of binding affinities on cluster formation in both no-crowder condi-

tions (Fig. 5.17) and conditions with a 30% volume fraction of crowders (Fig. 5.18). By quantifying

the median largest cluster sizes at various binding affinities, we identified the phase transition

behaviors in both conditions, with slightly different transition binding affinities. Notably, in the

presence of crowders at 30% volume fraction, the phase transition occurred at a lower binding

affinity (around 9 - 10 𝑘B𝑇 ), as compared to the no-crowders condition (for which the transition
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0% Crowder

Figure 5.17: Median largest cluster sizes among five repeats plotted as a function of the binding affinity
(𝜀) at 0% volume fraction of crowders and for a crowder temperature 𝑇𝑐 = 1.0. Representative snapshots
are shown for binding affinities 10.8, 13.1 and 25.0 𝑘B𝑇 , indicative of a phase transition observed between
binding affinities 11 and 12 𝑘B𝑇 , beyond which the cluster sizes increase dramatically because of lesser
unbinding probabilities. The binding affinity 𝜀 is varied here by changing the unbinding rate constant 𝑘off,
keeping 𝑘on fixed. The binding affinity of 10.8 𝑘B𝑇 has been used for all subsequent analyses.
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occured around 11 - 12 𝑘B𝑇 binding affinities).

It is important tomention that the drop in the largest cluster size at the highest binding affinity

(𝜀 = 25.0 𝑘B𝑇 ) under the 30% crowder volume fraction condition is due to the slower dynamics in

cluster formation within the same simulation times, leading to kinetic trapping and slower fusion

in forming large clusters. This is a point of difference from the case of no crowders where, for

𝜀 = 25.0 𝑘B𝑇 , almost all of the synDrop components were present in one giant cluster.

Furthermore, when we quantified the differences in the largest cluster sizes between these

two conditions and plotted them as a function of binding affinity (Fig. 5.19), a peak emerged at

𝜀 = 10.8 𝑘B𝑇 . This observation suggests that at this binding affinity, the crowder volume fraction

has the most significant effect on cluster formation. To capture the full dynamic range of the

system, we chose this binding affinity (𝜀 = 10.8 𝑘B𝑇 ), for all other MD simulation analyses to

study the effects of macromolecular crowding and non-equilbrium activity in the cytoplasm.

5.7 MD simulation analyses

We used graph-theory based methods for analyzing MD simulations. Each molecule within

MD simulations had a unique number identifier and was treated as the node for the graph. Bonds

formed at each time point were recorded based on molecule pairs that formed each bond, and

were treated as the edges for the graph. The graph at each time point was then constructed by

providing both node and edge information inputs using the igraph [498] package in python. To

identify clusters, a distance matrix was first calculated based on the topological shortest path that

links each pair of molecules. Subsequently, a hierarchical clustering algorithm was employed on

the distance matrix. This led to the reordering of molecule sequences, with molecules within

each cluster being grouped together. Cluster size was then determined based on the number of

molecules that were within each cluster. Locations of each molecule were also recorded at each

time point.
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30% Crowder

Figure 5.18: Median largest cluster sizes among five repeats plotted as a function of the binding affinity
(𝜀) at 30% volume fraction of crowders and for a crowder temperature 𝑇𝑐 = 1.0. Representative snapshots
are shown for binding affinities 10.8, 13.1 and 25.0 𝑘B𝑇 . A phase transition is observed between binding
affinities 9 and 10 𝑘B𝑇 .
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Figure 5.19: Differences in the median largest cluster sizes between the 2 crowder volume fraction condi-
tions (0% and 30%) plotted as a function of the binding affinity (𝜀) and for a crowder temperature𝑇𝑐 = 1.0.
A peak emerged at 𝜀 = 10.8 𝑘B𝑇 , suggesting that at this binding affinity, the crowder volume fraction has
the most significant effect on cluster formation.
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To calculate cluster diffusivity, clusters with size larger than 10 molecules were first identified

at each time point. Pairwise clusters from consecutive time points were connected from the

last time point by determining the largest number of same nodes, thus forming trajectories. If

a cluster’s size changed by 20 within a time interval, it was considered as a new cluster and

tracked as a distinct trajectory. Only trajectories with more than 10 time points were selected for

calculating cluster diffusivities, where mean squared displacement of the cluster’s center of mass

for each trajectory was fitted over the first 10 time intervals. All analyses were performed using

in-house Python3 code.

To determine the effective dissociation constants (𝐾𝑑 ) of the chemical bonds, we analyzed the

kinetics of bond formation in monomeric MD simulations until equilibrium was achieved. In the

monomeric system (where the dimers and hexamers are in a 1:1 stoichiometric ratio), we reduced

the available binding sites of two components from 6 and 2 to 1 and 1 each. By fitting the data

to an exponential growth function 𝐵(𝑡) = 𝐵eq(1 − exp(−𝑘𝑡)), we extracted the number of bonds

formed at equilibrium 𝐵eq. Subsequently, 𝐾𝑑 was calculated based on the concentration of all

species at equilibrium, using the formula for a dimerization reaction

𝐷 + 𝐻 ⇔ 𝐷𝐻 (5.3)

𝐾𝑑 =
[𝐷] [𝐻 ]
[𝐷𝐻 ] =

𝑁𝐷𝑁𝐻

𝑁𝐷𝐻𝑉
(5.4)

, where V is the volume of the simulation box. ’D’ and ’H’ correspond to the dimer and hexamer

species respectively.

To roughly match simulation time scales to experimental ones, the mean-squared displace-

ment of 40 nm GEM particles in simulation were fit to the Einstein diffusion relation in 3D

𝑀𝑆𝐷 (𝑡) = 6𝐷𝑡 for long times, and 𝐷 was obtained in the units of 𝜇𝑚2/𝜏 . The unit of time

𝜏 = 7.5× 10−8 seconds was then obtained by matching this 𝐷 to an approximate cellular value of
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𝜇𝑚2/𝑠 .

5.8 Discussion

Membraneless organelles carry outmany essential cellular functionswithin cells [463]. There-

fore, it is important to understand the spatial and temporal information associated with mem-

braneless organelles formation and dissolution – how cells regulate and coordinate this informa-

tion. Many studies have focused on specific chemical signals [499]; however, few studies have

looked at physical cues, which are indispensable but often neglected. Here, we demonstrated

that intracellular macromolecular crowding promotes droplet nucleation by reducing effective

dissociation constants of binding reactions but inhibits droplet growth by reducing droplet dif-

fusivities, while ATP-dependent cellular activity promotes droplet growth by fluidizing cellular

environment through promoting long-range structural rearrangements.

Macromolecular crowding has several effects on molecular assembly. First, it increases the

local concentrations of molecules due to excluded volume occupied by macromolecular crowders

[467]. Second, it imposes depletion-attraction forces that increase the propensity of molecular

assembly [466]. The cytoplasmic excluded volume is dominated by mesoscale particles, in par-

ticular ribosomes, therefore this entropic effect is most prominent at the mesoscale. Both effects

can affect binding interactions, leading to reduced effective dissociation constants [468]. Crowd-

ing agents have been shown to lower the critical concentrations for several in vitro reconstituted

phase separation systems [464, 500]. However, the inhibition of the kinetics of droplet growth

by excess macromolecular crowding is less studied due to the limited availability of controlled in

vivo phase separation systems.

ATP-dependent cellular activities impart a dynamic and non-equilibrium nature to the intra-

cellular environment, introducing non-thermal forces that amplify random fluctuating motion

beyond thermal effects [501]. The cytoskeleton, a key contributor to ATP-dependent activities,
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exhibits unique time-dependent material properties [495, 502]. On shorter timescales, it behaves

as semiflexible polymers primarily influenced by thermal fluctuations, resulting in subdiffusive

motion of attached beads. However, on longer timescales, the cytoskeleton transitions into a soft

glass-like material, leading to the superdiffusive movement of attached beads through structural

rearrangement driven by ATP-dependent activities. These time-dependent material properties,

influenced by ATP-dependent cellular activities, extend beyond the cytoskeleton and have also

been observed in the mammalian cytoplasm [503] and the membrane of red blood cells [497].

While existing studies on condensates have focused on biochemical aspects of ATP molecules

[504] or ATP-consuming processes within condensates [505–507], limited research has investi-

gated the impact of physical properties emerging from environmental ATP-dependent cellular

activities on condensate formation.

synDrops have a unique combination of features that make them an ideal platform to investi-

gate how intracellular biophysical environments affect condensates assembly. Droplet nucleation

and growth dynamics can be studied on a reasonable time scale (minutes - 1 hour). In contrast

to endogenous condensates, the synDrops components were designed to minimize non-specific

interactions with endogenous molecules within cells, including ATP-consuming enzymes. More-

over, the well-defined protein structures and network geometry make synDrops highly amenable

to simulation and analysis with graph-theoretical approaches.

Our study highlights how the intracellular environment modulates mesoscale molecular as-

sembly through a combination of macromolecular crowding and cellular active-matter. Notably,

the intracellular environment is highly heterogeneous in mesoscale diffusivity [508], reflecting

local heterogeneity in macromolecular crowding and cellular activity. These physical variations

may underlie the distinct behavior of droplet formation within cells compared to the theoretical

prediction that droplets should thermodynamically fuse into a single entity. By actively modulat-

ing local macromolecular crowding and cellular activity levels, cells could potentially control the

formation of endogenous condensates at different locations via biophysical signals. For example,
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increased cellular activity, such as actin dynamics near the cell cortex, could facilitate endoge-

nous condensate formation, which might in turn contribute to the nucleation and growth of the

cytoskeleton network.

We speculate that changes in the biophysical properties of cells could be sensed by their

impacts on condensate assembly. Indeed, a synthetic droplet can modulate the rates of kinase

reaction in response to changes in macromolecular crowding, demonstrating the feasibility of

this idea in cells [509]. On the other hand, the biophysical properties of the cell interior may also

change during disease progression, leading to aberrant phase separation of endogenous conden-

sates. Our study provides a framework to guide future investigations into the effects of intra-

cellular biophysical properties on endogenous condensate formation and dissolution and their

relevance to normal biology and disease pathology.
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Chapter 6

Conclusions and future outlook

6.1 Brief summary of the thesis

Soft materials, known for their flexibility and deformability [8–11], include polymers, col-

loids, foams, and biological materials [15–21]. Their unique properties make them essential in

a wide range of applications, from materials science to biology and medicine. This thesis aims

to understand the physics of self-organization in diverse soft matter systems, including materi-

als and biological entities. Focusing on dynamic binders and utilizing Coarse-Grained Molecular

Dynamics simulations with a custom HOOMD-blue plugin to enable stochastic binding and un-

binding [50, 51], our research aims to elucidate the self-aggregation mechanisms in soft matter,

connecting the realms of materials and biological sciences.

Before delving into detailed discussions of concluding remarks and future prospects for the

thesis projects, I will present a concise summary of the key findings from the main projects.
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6.2 Detailed outline of work and key findings

The prevalent method for engineering specific interactions between patches in colloidal ma-

terials to design programmable structures [52, 53, 187, 307] with high fidelity involves employing

complementary DNA strands, whose interaction strength can be adjusted by the nucleotide se-

quence and length [177, 178, 187, 310–312]. The first thesis project entails the design of a coarse-

grained molecular dynamics (CGMD) simulation model [50] using a simulation framework in

Python, named pyColloidomer, designed to explore the self-assembly of colloidal liquid droplets

with explicit mobile binders [240, 242, 269, 272–275], such as DNA. Central to this model is a

dynamic binding and unbinding protocol ensuring detailed balance [50, 118, 193, 337], offering

flexibility in controlling binding and unbinding rate constants with a tunable temperature depen-

dence (implemented as an open-source custom plugin in C++ [336]). The simulation framework

is accessible and freely available on GitHub, providing a realistic simulation of the adhesion patch

formation process [161, 164, 242] using explicit mobile binders. This approach enables insights

into the consequences of excluding particles from formed patches, critical for optimizing col-

loidomer assembly [161], and in preventing binders from being used up in colloidomer backbones

in our folding studies [165, 324, 325].

The model, based on droplets with a central particle (type A) and binders, each constituting

a pair of particles (types B and C) on its surface [50], mimics double-stranded tether and single-

stranded sticky-end DNA used in experiments [160–163, 280, 323]. The simulation incorporates

harmonic bonds and angular potentials to facilitate binder diffusion [160] and alignment along

the radial vector from the droplet center, providing a comprehensive understanding of the self-

assembly process. This versatile CG model is not only applicable to the study of mobile colloidal

self-assembly, but also to liposomes [269, 319–321], cell-cell interactions at biological interfaces

[38, 39, 93, 98, 100, 266], and nanoparticle gels [189, 190, 292–297, 327–330].

We investigate the tuning of the valence of assembled structures through kinetic control in
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the strong binding limit. The model not only effectively replicates the average behavior observed

in experiments, but also we can optimize experimental control parameters to achieve the highest

yield of long linear colloidomer chains [50, 161, 317, 318, 326], surpassing previous experimental

conditions. We anticipate that chains can be obtained when adhesion patches form and deplete

approximately half of the available binders before subsequent droplet collisions and patch forma-

tion. The relative speeds of the two competing processes, patch recruitment [242] and droplet-

droplet collision, can be adjusted to influence the types of structures observed in self-assembly,

thereby offering insights into kinetic control.

The temperature-controlled binding and unbinding rates allows us to setup an alternate heat-

ing and cooling protocol (with backbone and secondary interactions) that let us observe a hep-

tamer chain collapse into all possible rigid structures, in agreement with recent folding experi-

ments [50, 165]. In contrast to the experimental approach that aimed to design specific droplet

interactions for selecting a unique folded geometry, our model demonstrates that tuning DNA in-

teraction energy allows for the realization of all possible geometric configurations in simulations.

Thus, the model is not only validated by experiments but also exhibits predictive capabilities.

Additionally, we also observed that above a certain binding strength (around 𝜀 > 13), the

growth of a patch can follow a process characterized by two timescales, where saturation can

take much longer than initial recruitment [50, 242], thus offering insights that can be leveraged

to guide the assembly process in future studies. We also discovered that slowing binder motion

by increasing the drag on the binders (𝛾binder) or slowing down the binding by decreasing 𝑘on at

fixed bond strength 𝜀 can increase the patch recruitment time, which in turn can increase the

yield of higher valences in droplet assembly. The use of explicit binders in our model also shows

how steric repulsion between binders (designed to mimic electrostatic repulsion between DNA

strands [164, 342, 343]) affects the adhesion patch size and the concentration of binders therein.

The explicit binder model allows testing contributions to the free energy of patch formation [164]

and patch shape, aligning with experimental predictions.
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Building upon our prior work investigating the self-assembly of colloidal droplets withmobile

binders [240, 242, 269, 272–275], our current focus involves a detailed exploration of the dynamics

of adhesion patch formation between two droplets. Specifically, we aim to understand how the

molecular features of the system (such as the droplet size, binding strength, excluded binder

volume, binder concentration, flexibility of the harmonic springs) can be manipulated to tune the

growth, shape, and geometry of the adhesion patch [39, 50, 161, 164].

This investigation extends to the impact of lateral or cis-interactions, a phenomenon crucial

for enhancing binder recruitment, particularly observed in cellular junctions where E-cadherin

[38, 39, 93, 284] proteins mediate cell-cell adhesion [100]. Hence, we examine the consequences

of introducing lateral binding interactions [39, 281, 282, 284, 285] between binders on the same

droplet in the context of adhesion patch formation dynamics. In our coarse-grained model, we

introduced Lennard Jones attractions [356–359] between the inner binder particles on the same

droplet with varying interaction strengths. Our simulations reveal that in the presence of lat-

eral binding (or cis-interactions), the binders exhibit a more ordered packing into the adhesion

patch [39, 284, 285]. Moreover, a significantly higher number of binders can be recruited into the

adhesion patch compared to scenarios where no cis interactions are present. This observation re-

inforces the phenomenon of cis-trans cooperativity [39, 93, 281, 282], which has also been noted

in experimental studies. Recent experiments report that the decay rate of the fraction of droplet

monomers over time is accelerated in the presence of lateral interactions. In our coarse-grained

simulations of droplet assembly with lateral interactions, our current focus is on investigating

the parameter regime that substantiates this observed phenomenon. All of the above mentioned

directions constitute ongoing work in progress.

Our dynamic binding and unbinding protocol found an interesting application in a recent

collaboration with the Truskett, Rosales, and Milliron research groups (University of Texas at

Austin). This ongoing work involves the development of structural design principles [399, 400]

for gels assembled from multi-functional nanocrystals [189, 190, 286–298] and macromers fea-
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turing discrete functional groups, such as tetraPEG [299–301]. In an integrated coarse-grained

modeling platform established in collaboration with the Truskett group, we treat the building

blocks as patchy colloids with discrete binding sites [189, 190, 292, 293] capable of dynamic bind-

ing or unbinding [50]. This approach, employing dynamic bonding among the components, facil-

itates the design of responsive materials [28, 58, 77]. These colloids can form networks through

a linker-mediated strategy [189, 286, 296, 298], involving the reversible connection of macromers

or nanocrystals by bifunctional molecules [302]. Alternatively, they can be implicitly modeled as

bonds between binding sites, exhibiting the properties of a semiflexible polymer [401] chain. Cur-

rently, we are working on building the simulation setup for modeling both explicit and implicit

linkers. We are also exploring the influence of cappingmolecules [296, 298, 303] (that dynamically

compete with linkers for binding to colloids) on the structure and dynamics of the gel networks.

Furthermore, the integration of our existing dynamic binding and unbinding model grants ki-

netic leverage over the reaction rates of binding/unbinding, which can influence the dynamics

and morphology of kinetically arrested gels [402–404].

Intracellular environments are characterized as viscoelastic, highly crowded at the mesoscale

[304, 465, 473], and far from thermodynamic equilibrium. These distinctions arise from the com-

plexity of intracellular conditions, including the constant action of energy-consuming processes

[305, 306, 472]. As a versatile application of our dynamic binding and unbinding model to an

intriguing biological problem of interest, we also developed an in silico coarse-grained molecu-

lar dynamics (CGMD) simulation platform tailored for a synthetic liquid-liquid phase separation

(LLPS) system named synDrops [478, 480–484], consisting of 2 protein components, a hexam-

erization and a dimerization domain [482–484], respectively. This endeavor aims to investigate

how the cellular environment influences the formation of condensates. In our CGMD model

(simulations run using HOOMD-blue [50, 51, 334, 335]), binding occurs between a hexamer and

a dimer [51, 485, 486] through complementary interaction points at the end of these objects. In

addition, we included a third agent to mimic ribosomes (represented by spheres with no binding
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interactions), which are the dominant macromolecular crowders [304, 467] in the cytoplasm. The

well-defined structures and binding interactions between the two synDrop components enabled

us to quantify droplet network structures with graph theory based analyses [498].

Our results suggest that the combined influences of crowding and active matter [474–477]

in the cytoplasm promote mesoscale molecular assembly, providing improved predictive un-

derstanding of biomolecular condensate formation in vivo. More specifically, we observed that

macromolecular crowding facilitates condensate nucleationwhile hindering droplet growth through

coalescence [476, 490–493]. In the absence of crowders in the system, cluster formation was

highly limited. However, upon introducing a 30% volume fraction of crowders to simulate the

excluded volume effect typical in the cytoplasm, substantial cluster formation occurred, indicat-

ing the crucial role of macromolecular crowding in nucleating and stabilizing synDrop networks.

Interestingly, with a further increase in crowder volume fraction to 50%, we observed a higher

number of smaller droplets. Our simulation findings alignwith experimental data, suggesting that

physiological crowding at approximately 30% is optimal [51] for the formation of large synDrops.

We also observed that crowding frustrates coalescence (growth) by reducing cluster diffusivities.

This effect is particularly pronounced under conditions of excess macromolecular crowding. We

also determined the effective dissociation rate (𝐾𝑑 ) under various crowder volume fractions by

quantifying the equilibrium number of bond formations in a monomeric system. The simulations

showed a reduction in effective𝐾𝑑 (increased affinity) with higher crowder volume fractions, sug-

gesting that increased macromolecular crowding may enhance binding interactions [468].

The inhibition of growth is overcome by ATP-dependent cellular activities. Actomyosin dy-

namics [495, 497] emerged as the primary mechanism [470] driving increased mesoscale diffusiv-

ity in mammalian cell cytoplasm, essential for the formation of large synDrops. To investigate the

influence of non-thermal cellular activity [488, 489, 494] on the formation of synDrops through

molecular dynamics simulations, we introduce a distinct effective temperature 𝑇𝑐 for the crow-

ders, achieved by employing separate Langevin [345] thermostats in HOOMD-blue. A positive
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correlation between the effective temperature of the crowders and the size of the largest cluster

was found, and also the individual cluster diffusivities were slightly higher with higher effective

crowder temperatures. The observed rise in cluster diffusivity was relatively modest, suggesting

that other factors may play a more significant role in the enhanced mesoscale assembly at higher

crowder effective temperatures (supporting experimental observations).

We also investigated the impact of binding affinities on cluster formation under both no-

crowder conditions and conditions with a 30% volume fraction of crowders. We identified phase

transition behaviors in both conditions, with slightly different transition binding affinities [51].

Notably, in the presence of crowders at a 30% volume fraction, the phase transition occurred at a

lower binding affinity, compared to the no-crowders condition.

6.3 Future Research Directions

Our advanced coarse-grained simulation platform, incorporating Monte Carlo moves [118,

193, 337] to explicitly model binding/unbinding [50, 336] kinetics with mobile binders [240, 242,

269, 272–275], presents amethodological breakthrough that can be expanded to simulate a variety

of related phenomena in soft matter physics. Preliminary data suggests that our coarse-grained

(CG) model for colloidal droplets with explicit mobile binders adeptly reproduces the observed

behavior in the folding [162, 163, 165] of two-dimensional colloidomer homopolymer chains. In

future work, we intend to utilize our model for comparative analysis, contrasting the structures

and pathways generated through the use of explicit binders with those produced using highly

simplified models [161, 351]. Additionally, we plan to extend our folding studies to three dimen-

sions by removing confinement, providing a detailed exploration of folding pathways [165, 510,

511] that may be challenging to quantify experimentally.

While our model captures what we consider to be the most crucial features of systems with

mobile binding sites, there are simplifications that we intend to investigate in future research.
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For instance, the inclusion of a spring between the center of the droplet and binders allows for

variation in the binders’ vertical position. By tuning this parameter, we can explore the tendency

to form a planar adhesion patch — an aspect important in the case of deformable droplets [512],

a regime yet to be explored in our simulations. Our current work employs harmonic springs, and

we plan to investigate the differences that arise when more complex stretching behavior is taken

into account (such as use of FENE bond potentials).

In future work, our aim is to employ the coarse-grained (CG) model with explicit binders to

assess the contributions to the free energy [394] of patch formation and patch shape [164], as

predicted experimentally. We intend to utilize advanced enhanced sampling techniques, such as

umbrella sampling [395], to quantitatively measure the free energy of the adhesion process for

droplets that bind through these mobile binders on the surface.

A pivotal future direction for this project involves attempting to incorporate the effect of

forces [97, 98, 193] in the unbinding kinetics for cellular adhesion proteins, such as cadherins [38,

39, 93, 284]. This exploration is motivated by the desire to model slip and catch bonds [97, 98,

101, 396] commonly observed in various mechanosensitive biophysical systems [38, 39, 93, 99,

100]. Cadherins are recognized for their ability to undergo force-dependent tuning of adhesion

[39, 281, 282, 284, 285], functioning as catch-bonds under tensile stress [101, 396] — rigorously

defined as an increase in lifetime with increasing force. Using molecular dynamics (MD) simula-

tion techniques like steered MD [397] or constant-force MD, our aim is to quantitatively ascertain

the threshold force for rupture when two droplets with mobile binders are pulled apart, initially

implementing standard unbinding kinetics. Subsequently, we are also intrigued by understand-

ing how this threshold rupture force varies when employing slip [99] and catch [101, 371, 375,

398] bond unbinding kinetics.

The exploration of structural design principles [399, 400] for colloidal gelation using our in-

tegrated coarse-grained simulation approach (employing a patchy particle treatment of colloids

with fixed binding sites [189, 190, 292, 293, 298] coupled with our dynamic binding/unbinding
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protocol [50]) opens up numerous avenues for future research. Currently, our simulation setup

involves explicit bifunctional linkers [189, 286, 296, 298, 302] facilitating the bonding of colloids.

However, our goal is to develop an implicit linker representation akin to ourmobile binder coarse-

grained model. A significant future objective is to theoretically generate and experimentally val-

idate phase diagrams for linker-mediated star polymer [299–301, 461, 462] and nanocrystal [189,

190, 286–298] networks with both symmetric and asymmetric linkers. These phase diagrams will

emphasize regions of the parameter space suitable for forming arrested-phase-separation [402–

404] and single-phase equilibrium gels. Furthermore, the results will elucidate various pathways

available to form these gel networks. We will assess the effects of altering the ratio of functional

to inert surface ligands compared to adjusting the concentration of caps [296, 298, 303] on the

phase behavior. The current dynamic binding and unbinding code needs to be adjusted to ac-

commodate the probabilistic switching of ligands between uncapped (available for bonding) and

capped (unavailable) states.

The tunability of exchange kinetics [300, 513] for caps and linkers can enable the formation

of networks with qualitatively different morphologies, contingent on whether they are under

thermodynamic (chains or stringy gels) or kinetic control (trapped structures with branching

[50, 297, 327]). We want to employ coarse-grained simulations to determine parameter ranges

where these behaviors should be accessible for networks of linked nanocrystals with caps [296,

298, 303]. Ultimately, this can serve as a guide for designing suitable control experiments. We also

want to establish design rules governing how linker length and flexibility [190, 292] can affect

the network bond correlation, bond persistence time [190], structure factor [189], elastic modulus

[514, 515], structural relaxation time, and optical properties (such as absorption spectra [288, 294,

296, 302, 399]) of these gels. Previous experimental work has demonstrated that tuning the bond

exchange kinetics and thermodynamics can alter the shear relaxation time and plateau modulus

for dynamic covalent tetraPEG hydrogels [299, 300]. It will be interesting to examine whether

simulations incorporating these kinetic effects at varying stoichiometries can provide insights
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into achieving behaviors, such as strain stiffening [514–516]. These proposed future goals could

facilitate the design of materials with phase behavior and mechanical properties suitable for a

diverse range of applications.

Exploring liquid-liquid phase separation in the mesoscale [304, 465, 473] organization of

macromolecules within the crowded and active cellular cytoplasm, utilizing a coarse-grained

simulation approach, opens up numerous potential future directions for investigation. In our

current model, as described above, we simplify by assuming that the majority of crowding arises

from a single agent [304, 517, 518], ribosomes, which serves as a reasonable initial approxima-

tion to the cytoplasm. We have the ability to enhance polydispersity by incorporating various

crowding proteins of different sizes, potentially derived from experimental data on cytoplasmic

content. For our preliminary investigation, we will explore the role of polysomes [519–521](in

addition to ribosomes), which are assemblies of individual ribosomes on a single mRNA strand.

The polysomes can be modeled in CG simulations as bonded chains of ribosomes with a spacing.

Currently, in our simulations, periodic boundary conditions [205] are employed. Neverthe-

less, we can introduce walls to encapsulate the contents of our system. This leads to apparent

subdiffusive behavior [522] as particle motion becomes restricted after an intermediate timescale.

We will further investigate the impact of explicit confinement [523] on modulating the effect

of crowders on critical condensate concentration. We are also exploring the impact of altering

protein concentrations (rods and hexamers) in our MD simulations while maintaining a fixed

stoichiometry of 3:1 (for a given crowder volume fraction and binding affinity). This investi-

gation aims to elucidate whether our coarse-grained MD simulations replicate phase separation

phenomena [524], where a critical concentration and a well-defined phase transition exist con-

cerning a specific property of the system, such as the size of the largest condensate.

In the current model, we account for non-equilibrium activity [488, 489, 494] in the cell by

assigning a different effective temperature to the crowders (mimicking them as active enzymes)

compared to the rest of the system, achieved through separate MD ’thermostats’ in HOOMD-
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Blue [334, 335]. In future work, we aim to explore the integration of a colored noise thermostat

scheme [525, 526] into the MD engine. This enhancement would enable us to simulate dynamics

arising from various types of active processes beyond the current temperature-based approach.

6.4 Concluding remarks

This thesis has leveraged a dynamic binding and unbinding protocol to investigate the physics

of self-organization phenomena in a spectrum of diverse soft and biological materials [8–11]

featuring binders, ranging from colloidal liquid droplets [50, 160–163, 242, 280, 323, 326] to

biomimetic adhesive emulsions [38, 39, 93, 266], nano-particles forming gels [189, 190, 286, 287,

292–298] and even the active, crowded cytoplasm of mammalian cells [51, 304, 468, 488, 489, 492].

The study delves into the effects of crowding, kinetic rates, binder concentration, binding affini-

ties and non-equilibrium activity to obtain a comprehensive understanding of self-aggregation

mechanisms in these materials. Our framework, characterized by its strength and flexibility, is

readily accessible and user-friendly. We encourage and hope that researchers will build upon our

work, exploring new directions and expanding the scope of these studies.
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