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Abstract

Many methods to accelerate sampling of molecular configurations are based on the idea that

temperature can be used to accelerate rare transitions. These methods typically compute equi-

librium properties at a target temperature using reweighting or through Monte Carlo exchanges

between replicas at higher temperatures. Our work built on studies showing the potential of in-

vertible non-equilibrium dynamics when estimating equilibrium properties at target equilibrium

density. An unbiased non-equilibrium importance sampling (NEIS) estimator with smaller vari-

ance compared to equilibrium vanilla estimator was proposed and tested in simple mathematical

models. We have shown that the non-equilibrium method can be extended to molecular systems

and it can be further improved by combining it with sophisticated enhanced sampling techniques

such as umbrella sampling when dealing with free energy surface with multiple minima. We have

developed generalized unbiased NEIS estimators with given trajectory data, and have therefore

clarified the nature of the unbiased property of NEIS estimators. With the correct way of com-

puting variance of unbiased NEIS estimators, we have shown that there exists an optimal NEIS

estimator with given trajectory. Finally, we showed the connection between density propagation

method and unbiased NEIS estimators, targeted at estimating the volume of energy basins. We

also introduce an “umbrella sampling”-like dynamics that could be potentially useful to compute

basin volume in high dimensions.
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1 | Introduction

1.1 Molecular Dynamic simulation

In 1957 the technique of molecular dynamics (MD) was first introduced by the pioneering

work of B. J. Alder and T. E. Wainwright [1] to study the phase transition for a hard sphere

system. Later in 1968 and 1969, refined and consistent force field was proposed by two Nobel-

prize-awarded work of Lifson, Warshel and Levitt [2, 3], which built a foundation for further MD

simulations. Fast forwarding to 1977, the first MD simulation of protein was performed in the

Karplus group [4], where the dynamics of bovine pancreatic trypsin inhibitor were studied by

solving the equation of motion under an empirically fit potential energy function.

Thanks to the increasingly powerful computer hardware, especially graphics processing units

(GPUs), MD simulations of complex molecular systems become feasible [5, 6]. Over the years,

MD simulations have been extensively used in various fields of research [7, 8], including ex-

amples from my colleagues at NYU such as understanding the assembly pathways of colloidal

system [9, 10], studying large biomolecular complexes [11], discovering the influence of force in

biochemical systems [12, 13], studying the mechanism of proton transportation [14], characteriz-

ing local environments in different polymorphs of molecular crystals [15], and in designing new

drugs [16].

As an analytical solution of equation of motion is not possible for any realistic system, we

instead resort to “sampling” possible structures, which allows us to compute average observables

1



using these sampled data points [17, 18]. MD simulations offer an efficient approach to sampling

molecular configurations. In a typical MD simulation, interactions between particles in a system

are modeled by force field (representing the potential energy as a function of positions). Trajecto-

ries of particles are obtained by iteratively incrementing the solutions to kinematic equations of

motion using a finite time step Δ𝑡 , The accuracy of the numerical solution to equation of motion

depends on time step Δ𝑡 , and more accurate numerical solution are achieved with smaller time

step at the cost of more expensive computation cost. Simply solving the equations of classical

mechanics will result in generating samples from the so-called microcanonical ensemble, where

total energy is constant and each configuration is equally likely [19].

We are most interested in studying processes occurring at constant temperature, where the

probability density of seeing a given configuration at equilibrium is given by the Boltzmann dis-

tribution 𝜌 (x) = exp (−𝛽ℋ (x))/𝑄 (𝛽). Herex is the coordinate in 6𝑁 -dimensional phase space

of the system containing 𝑁 particles in 3D,ℋ is the Hamiltonian (potential + kinetic energy) of

the system, 𝛽 = 1/𝑘B𝑇 , 𝑘B is Boltzmann’s constant, 𝑇 is the absolute temperature, and 𝑄 (𝛽) is

the “partition function” which is the integral over all possible configurations that normalizes the

distribution. As such, the equations of motion are supplemented by adding a “thermostat” such

that energy is effectively exchanged with a constant temperature “bath”, keeping the average

kinetic energy constant. If sampling is ergodic, meaning that all configurations are visited with

frequencies consistent with that equilibrium density, then from 𝑁 samples generated by MD, we

can compute the average of an observable 𝑂 that is approximately equal to its time average:

⟨𝑂⟩ = 1
𝑄 (𝛽)

∫
Γ
𝑂 (x) exp (−𝛽ℋ (x)) 𝑑x ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑂 (x (𝑡𝑖)) , (1.1)

where the integral over Γ represents a sum over all possible phase space points.

At constant temperature, a quantity termed the free energy determines the direction of spon-

taneous processes, such that the system starting in any particular configuration will evolve such
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that the free energy is minimized on average, at which point the system explores the equilib-

rium conformational ensemble. The free energy of the system at equilibrium can be computed as

𝐹 = −𝑘B𝑇 ln𝑄 .

For many physical processes of interest, we are interested in the equilibrium difference in

free energy between two “states” of the system, where here state is used in the colloquial sense

and refers to two sets of configurations of the system that we think are interesting-for example,

we could study the free energy difference between a protein bound to a ligand and a protein

and ligand separated in solution. The free energy of a state can be defined by calculating the

contribution of configurations in that state to the partition function using a characteristic function

𝜒𝛼 (x), with:

𝐹𝛼 = −𝑘B𝑇 ln
(

1
𝑄 (𝛽)

∫
Γ
𝜒𝛼 (x) exp (−𝛽ℋ (x)) 𝑑x

)
= −𝑘B𝑇 ln ⟨𝜒𝛼⟩. (1.2)

Hence, the free energy difference between between two states at equilibrium can be computed

from the negative log of the ratio of how often each state is seen at equilibrium:

Δ𝐹 = 𝐹𝐵 − 𝐹𝐴 = −𝑘B𝑇 ln
(
⟨𝜒𝐵⟩
⟨𝜒𝐴⟩

)
. (1.3)

A typical molecular system usually contains huge amount of particles with the dimension of

phase space being 6𝑁 ≫ 1, and hence a collective variable (CV), which maps 6𝑁 -dimensional

phase space to the space of particular interest with low dimensions (usually less than 3), is used

to capture critical features of microstates along trajectories from MD simulations.

After selecting a CV S (x), it is convenient to find the “potential of mean force” (PMF) or the

free energy surface (FES) as a function along that CV [17]. 𝐹 (s; 𝛽) at the coordinate s in CV

space serves as an average of all possible microstates that have a CV value equal to s at the given

temperature 𝑇 , and is equivalent to defining the characteristic function above 𝜒𝛼 using a delta

3



function:

exp (−𝛽𝐹 (s; 𝛽)) ≡ 1
𝑄 (𝛽)

∫
Γ
𝛿 (S (x) − s) exp (−𝛽ℋ (x)) 𝑑x. (1.4)

This FES helps give a physically motivated visualization of what the most important config-

urations are, but can mask hidden states and barriers when marginalizing over too many dimen-

sions. Hence it is important to select CVs that capture the most important degrees of freedom for

the process of interest [20–29].

1.2 Enhanced Sampling

Despite the power and wide application of MD simulation, one critical challenge of sampling

of rare events limits the efficiency of MD simulations [17, 18]. Simulations will inevitably be

trapped in a local basins for some amount of time due to free energy barriers
(
𝛽Δ𝐹 ‡ ≫ 1

)
, where

. For many processes of interest in biomolecular simulation, the transition of interest can be

dominated by a sufficiently high barrier from a “reactant” to “product” so that it will effectively

never be observed in unbiased simulations at room temperature. Therefore, various enhanced

sampling techniques have been proposed and developed over the decades.

Most enhanced sampling techniques follow the idea of importance sampling (IS) [30], i.e.

drawing sample points from a starting probability density 𝜌0 (x) which is easy to be sampled

and giving an unbiased estimation of a test function 𝜙 (x) of interest at the target probability

density 𝜌1 (x) by
⟨𝜙⟩1 ≡

∫
Γ
𝜙 (x) 𝜌1 (x) 𝑑x

=

∫
Γ

𝜙 (x) 𝜌1 (x)
𝜌0 (x)

𝜌0 (x) 𝑑x

≡
〈
𝜙𝜌1

𝜌0

〉
0
.

(1.5)

If the starting probability 𝜌0 (x) and the target probability density 𝜌1 (x) are known up to a nor-

malization constant, then a self-normalized expression is used to give a slightly biased estimation
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of the test function 𝜙 (x) but with possibly smaller variance [31, 32]:

⟨𝜙⟩1 =

〈
𝜙𝜌1
𝜌0

〉
0〈

𝜌1
𝜌0

〉
0

. (1.6)

Enhanced sampling techniques can be briefly classified in two categories. (a) Collective vari-

able (CV) based method that adds biased potentials to accelerate slow modes of motion rec-

ognized by CVs. Some available methods include umbrella sampling (US) [33], metadynamics

(metaD) [34], well-tempered metadynamics (WTmetaD) [35], on the fly probability enhanced

sampling (OPES) [36], adiabatic free energy dynamics (AFED) [37, 38], temperature accelerated

molecular dynamics (TAMD) [39], infinite switch simulated tempering in force (FISST) [40]. Ob-

viously the efficiency of such kind of enhanced sampling methods largely depends on how good

the chosen CVs can capture the slow modes of motion, which is another challenging topic. (b)

Temperature based method that utilizes high mobility at high temperature to overcome large free

energy barriers. Some typical methods are replica exchange molecular dynamics (REMD) [41],

replica exchange with solute tempering (REST) [42, 43].

1.2.1 Umbrella Sampling

Umbrella sampling performs localized simulations around some CV values {s𝑖}𝑖=1,...,𝐾 respec-

tively by adding a biased harmonic potential centered at a particular CV coordinate s𝑖 in the 𝑖th

biased simulation.

𝑈𝑖 (x) = 𝑈 (x) +
1
2
𝑘𝑖 |S (x) − s𝑖 |2 , (1.7)

where𝑈 (x) is the unbiased potential energy of interest,𝑈𝑖 (x) is the biased potential energy in

the biased 𝑖th simulation, 𝑘𝑖 is the spring constant in the 𝑖th biased simulation that controls the

spread of biased sampling, S (x) is the defined CV that maps position x to CV space s and the

dimension of CV space is usually 1 or 2 in practice.
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1.2.2 Reweighting Techniqes

When 𝑘𝑖 is large, free energy in CV space around s𝑖 in the 𝑖th biased simulation is approx-

imately harmonic, and sampling around s𝑖 in CV space is efficient. Then biased free energy

surface can be estimated locally in each biased simulation. Some reweighting techniques [44–48]

are used to combine these local biased data to obtain the overall unbiased free energy surface.

1.2.2.1 Weighted Histogram Analysis Method (WHAM)

One common reweighting technique is the so-called Weighted Histogram Analysis Method

(WHAM) [44, 49, 50]. The idea of WHAM is to maximize the overall probability of sampling the

specific trajectories.

Firstly, the biased probability density at the 𝑖th biased simulation in CV space 𝜌𝑏𝑖 (s) is as-

sumed to have the form:

𝜌𝑏𝑖 (s) = 𝑐𝑖𝜌𝑢 (s) exp (−𝛽0𝑤𝑖 (s)), (1.8)

where 𝜌𝑢 (s) is the unbiased probability density in CV space, 𝑤𝑖 (s) = 1
2𝑘𝑖 |s − s𝑖 |

2 is the biased

potential added in the 𝑖th biased simulation, and 𝑐𝑖 =

(∫
Γ
𝜌𝑢 (s) exp (−𝛽0𝑤𝑖 (s)) 𝑑s

)−1
is the

normalization factor of the biased probability density.

Secondly, the CV space is discretized uniformly for simplicity and analytical biased probability

densities reduce to averaged probabilities over these windows:

𝜌𝑏
𝑖,𝑘
≡ 𝜌𝑏𝑖 (s𝑘) = 𝑐𝑖𝜌𝑢 (s𝑘) exp (−𝛽0𝑤𝑖 (s𝑘)) ≡ 𝑐𝑖𝜌𝑢𝑘 exp

(
−𝛽0𝑤𝑖,𝑘

)
, (1.9)

where 𝑐𝑖 ∝
(∑

𝑘 𝜌
𝑢
𝑘

exp
(
−𝛽0𝑤𝑖,𝑘

) )−1
is the numerical normalization factor over the windows in

the 𝑖th biased simulation.

Then the overall probability of obtaining 𝑛𝑖,𝑘 samples within the window 𝑘 in the 𝑖th biased

6



simulation can be expressed as follows.

P
({
𝑛𝑖,𝑘

}
𝑖,𝑘
|
{
𝜌𝑢
𝑘

}
𝑘

)
=

(∑
𝑖,𝑘 𝑛𝑖,𝑘

)
!∏

𝑖,𝑘

(
𝑛𝑖,𝑘 !

) ∏
𝑖,𝑘

(
𝜌𝑏
𝑖,𝑘

)𝑛𝑖,𝑘
=

(∑
𝑖,𝑘 𝑛𝑖,𝑘

)
!∏

𝑖,𝑘

(
𝑛𝑖,𝑘 !

) ∏
𝑖,𝑘

(
𝑐𝑖𝜌

𝑢
𝑘

exp
(
−𝛽0𝑤𝑖,𝑘

) )𝑛𝑖,𝑘 (1.10)

Optimizing the overall probability P
({
𝑛𝑖,𝑘

}
𝑖,𝑘
|
{
𝜌𝑢
𝑘

}
𝑘

)
with respect to parameters

{
𝜌𝑢
𝑘

}
𝑘
is

the same as optimizing the logarithm of the overall probability lnP
({
𝑛𝑖,𝑘

}
𝑖,𝑘
|
{
𝜌𝑢
𝑘

}
𝑘

)
:

𝜕

𝜕𝜌𝑢
𝑘

lnP =
∑︁
𝑖

∑︁
𝑗

𝑛𝑖, 𝑗
𝜕 ln 𝑐𝑖
𝜕𝜌𝑢

𝑘

+
∑︁
𝑖

𝑛𝑖,𝑘
1
𝜌𝑢
𝑘

= −
∑︁
𝑖

𝑁𝑖𝑐𝑖 exp
(
−𝛽0𝑤𝑖,𝑘

)
+ 𝑁𝑘
𝜌𝑢
𝑘

= 0,
(1.11)

where 𝑁𝑖 =
∑
𝑘 𝑛𝑖,𝑘 is the total number of sampling points in the 𝑖th biased simulation and

𝑁𝑘 =
∑
𝑘 𝑛𝑖,𝑘 is the total number of sampling points within the 𝑘th window among all the bi-

ased simulations. This leads to the so-called WHAM equations:


𝜌𝑢
𝑘
=

𝑁𝑘∑
𝑖 𝑁𝑖𝑐𝑖 exp

(
−𝛽0𝑤𝑖,𝑘

)
𝑐−1
𝑖 =

∑︁
𝑘

𝜌𝑢
𝑘

exp
(
−𝛽0𝑤𝑖,𝑘

) (1.12)

The WHAM equations can be solved self-consistently:


𝜌
(𝑛+1)
𝑘

=
𝑁𝑘∑

𝑖 𝑁𝑖𝑐
(𝑛)
𝑖

exp
(
−𝛽0𝑤𝑖,𝑘

)
𝑐
(𝑛)
𝑖

=

(∑︁
𝑘

𝜌
(𝑛)
𝑘

exp
(
−𝛽0𝑤𝑖,𝑘

))−1

,

(1.13)

where 𝜌 (𝑛)
𝑘
, 𝑐
(𝑛)
𝑖

are the values of updated unbiased probability at 𝑘th window and the correspond-

ing normalization factor in the 𝑖th biased simulation in the 𝑛th iteration respectively.
{
𝜌
(0)
𝑘

}
𝑘
are

initialized as all ones as a fair initial guess and iteration steps until it meets some termination
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conditions such as change of all estimated unbiased probabilities is within some tolerance.

1.2.2.2 Eigenvector Method for Umbrella Sampling (EMUS)

Anothermethodwith novelmathematical results is so-called eigenvectormethod for umbrella

sampling (EMUS) [46]. The idea of EMUS is establishing connections between biased results and

unbiased results through somemathematical derivations and recognizing an eigenvector problem

regarding the “overlap” matrices.

Firstly, several quantities are defined to simplify following derivations:



𝜌0 (x) =
exp (−𝛽0ℋ (x))∫

Γ
exp (−𝛽0ℋ (x)) 𝑑x

𝜓𝑖 (x) = exp
(
−𝛽0

1
2
𝑘𝑖 |S (x) − s𝑖 |2

)
𝜌𝑖 (x) =

𝜌0 (x)𝜓𝑖 (x)∫
Γ
𝜌0 (x)𝜓𝑖 (x) 𝑑x

,

(1.14)

where 𝜌0 (x) is the unbiased probability density,𝜓𝑖 (x) is the biased factor introduced by biased

harmonic potential centered at the CV s𝑖 in the 𝑖th biased simulation, and 𝜌𝑖 (x) is the biased

probability density in the 𝑖the biased simulation.

Secondly, a connection between mean value ⟨𝜙⟩0 of a test function 𝜙 (x) under unbiased

probability density 𝜌0 (x) andmean value ⟨𝜙⟩𝑖 of the test function under biased probability 𝜌𝑖 (x)
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in the 𝑖th biased simulation can be established by mathematical derivations:

⟨𝜙⟩0 ≡
∫
Γ
𝜙 (x) 𝜌0 (x) 𝑑x

=

∫
Γ
𝜙 (x)

∑
𝑖 𝜓𝑖 (x)∑
𝑘 𝜓𝑘 (x)

𝜌0 (x) 𝑑x

=
∑︁
𝑖

{∫
Γ
𝜙∗ (x)𝜓𝑖 (x) 𝜌0 (x) 𝑑x

}
=

∑︁
𝑖

{∫
Γ
𝜙∗ (x)𝜓𝑖 (x) 𝜌0 (x) 𝑑x∫

Γ
𝜓𝑖 (x) 𝜌0 (x) 𝑑x

∫
Γ
𝜓𝑖 (x) 𝜌0 (x) 𝑑x

}
=

∑︁
𝑖

{
⟨𝜙∗⟩𝑖

∫
Γ
𝜓𝑖 (x) 𝜌0 (x) 𝑑x

}
=

∑︁
𝑖

{
⟨𝜙∗⟩𝑖 𝑧𝑖

} ∑︁
𝑗

{∫
Γ
𝜓 𝑗 (x) 𝜌0 (x) 𝑑x

}
,

(1.15)

where 𝜙∗ ≡ 𝜙∑
𝑖 𝜓𝑖

and 𝑧𝑖 ≡
∫
Γ
𝜓𝑖 (x)𝜌0 (x) 𝑑x∑

𝑗 {
∫
Γ
𝜓 𝑗 (x)𝜌0 (x) 𝑑x} with obviously

∑
𝑖 𝑧𝑖 = 1. To cancel out the latter

term in the last line, let 𝜙 (x) = 1 in Eq. 1.15, and we get

1 = ⟨1⟩0 =
∑︁
𝑖

{⟨1∗⟩𝑖 𝑧𝑖}
∑︁
𝑗

{∫
Γ
𝜓 𝑗 (x) 𝜌0 (x) 𝑑x

}
(1.16)

Combining Eq. 1.15 and Eq. 1.16, we have the key expression in EMUS:

⟨𝜙⟩0 =
∑
𝑖 𝑧𝑖 ⟨𝜙∗⟩𝑖∑
𝑖 𝑧𝑖 ⟨1∗⟩𝑖

(1.17)

Next step we express the constants {𝑧𝑖}𝑖 by taking 𝜙 (x) = 𝜓 𝑗 (x) in Eq. 1.15:

〈
𝜓 𝑗

〉
0 ≡

∫
Γ
𝜓 𝑗 (x) 𝜌0 (x) 𝑑x

≡ 𝑧 𝑗
∑︁
𝑘

{∫
Γ
𝜓𝑘 (x) 𝜌0 (x) 𝑑x

}
=

∑︁
𝑖

{〈
𝜓 ∗𝑗

〉
𝑖
𝑧𝑖

} ∑︁
𝑘

{∫
Γ
𝜓𝑘 (x) 𝜌0 (x) 𝑑x

}
,
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which gives

𝑧 𝑗 =
∑︁
𝑖

𝑧𝑖𝐹𝑖 𝑗 , (1.18)

where 𝐹𝑖 𝑗 ≡
〈
𝜓 ∗𝑗

〉
𝑖
is the overlap matrix.

Eq. 1.18 suggests that the vector of normalization constants z is the left eigenvector of the

overlap matrix F with eigenvalue 1. If there is a sufficient overlap between any of two biased

simulations, there is a unique solution to this eigenvector problem since the overlap matrix F is

a stochastic matrix
∑
𝑗 𝐹𝑖 𝑗 = 1 by definition and a stochastic matrix J has a unique eigenvector

with eigenvalue one if it is irreducible: for any possible grouping of indices into two distinct sets

𝐴 and 𝐵, there exists some 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵, such that 𝐽𝑖 𝑗 ≠ 0.

In practice, the entries of the overlap matrix 𝐹𝑖 𝑗 and the averages ⟨𝜙∗⟩𝑖 and ⟨1∗⟩𝑖 are estimated

by the time averages: 

𝜙∗ =
1
𝑇

𝑇−1∑︁
𝑡=0

𝜙
(
X𝑖
𝑡

)∑
𝑘 𝜓𝑘

(
X𝑖
𝑡

)
1̄∗ =

1
𝑇

𝑇−1∑︁
𝑡=0

1∑
𝑘 𝜓𝑘

(
X𝑖
𝑡

)
𝐹𝑖 𝑗 =

1
𝑇

𝑇−1∑︁
𝑡=0

𝜓 𝑗
(
X𝑖
𝑡

)∑
𝑘 𝜓𝑘

(
X𝑖
𝑡

) ,
(1.19)

where X𝑖
𝑡 is the coordinate of the sample point at time 𝑡 in the 𝑖th biased simulation. Then

the vector of the estimated normalization constants zEMUS is the numerical solution to 𝑧EMUS
𝑗 =∑

𝑖 𝑧
EMUS
𝑖 𝐹𝑖 𝑗 with

∑
𝑖 𝑧

EMUS
𝑖 = 1 using QR factorization as in Golub and Meyer [51]. If the samples

X𝑖
𝑡 are independent, multistate Bennett acceptance ratio estimator (MBAR) [45] is the nonpara-

metric maximum-likelihood estimator of z [52].
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1.3 Noneqilibrium Importance Sampling (NEIS) estimator

Statistical estimation through the process of equilibrium dynamics is based on the principle

of detailed balance. Given an invertible dynamics

¤X (𝑡,x) = b (X (𝑡,x)) , (1.20)

where X (0,x) = x ∈ Γ ⊂ R𝑑 is a microstate propagated in time to X (𝑡,x) through the vector

field b. Since the dynamical process is invertible, we have

X (𝑠,X (𝑡,x)) = X (𝑠 + 𝑡,x) ,∀𝑠, 𝑡 ∈ R. (1.21)

An equilibrium dynamics means that some probability density 𝜌 (x) is preserved under time

evolution of such equilibrium dynamics. Then the expectation value of an arbitrary test function

𝜙 (x) under the target probability density 𝜌 (x), denoted by ⟨𝜙⟩, can be estimated by a time

average along the equilibrium trajectory if the process is ergodic [17]. Converging this estimate

is difficult due to the challenge of observing rare events, due to the fact that the expectation ⟨𝜙⟩ is

dominated at the states xwhich are rare under the probability density 𝜌 (x) and are infrequently

visited by the equilibrium dynamics.

Several importance sampling techniques [53–58] based on nonequilibrium dynamics, which

are potentially more versatile than equilibrium ones, have been developed and shown success

over the decades.

One well-known method is the annealed importance sampling (AIS) [59], which gradually

propagates a starting probability density that is easy to sample (e.g. at high temperature) to

the target probability density that is hard to sample (e.g. at low temperature). Let 𝜌0 (x) =

exp (−𝑈0) be the appropriately chosen starting probability density with a reduced energy𝑈0 (x)
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and 𝜌 (x) = exp (−𝑈 (x)) be the target probability density with a reduced energy 𝑈 (x). Then

𝐿 − 1 intermediate reduced energies {𝑈𝑙 (x)}𝐿−1
𝑙=1 are inserted between 𝑈0 (x) and 𝑈 (x) and the

𝑙-th intermediate reduced energy is defined as

𝑈𝑙 (x) ≡
(
1 − 𝑐

(
𝑙

𝐿

))
𝑈0 (x) + 𝑐

(
𝑙

𝐿

)
𝑈 (x) ,∀𝑙 = 1, . . . , 𝐿 − 1, (1.22)

where 𝑐 : [0, 1] → [0, 1] is a strictly monotonically increasing function with 𝑐 (0) = 0 and

𝑐 (1) = 1. Let 𝑇𝑙 (x,y) be the transition kernel at the intermediate probability density 𝜌𝑙 (x) that

satisfies detailed balance condition:

𝜌𝑙 (x)𝑇𝑙 (x,y) = 𝜌𝑙 (y)𝑇𝑙 (y,x) . (1.23)

Then a sequence of sample points {x0, . . . ,x𝐿−1} are generated as follows. The initial sample

point x0 is drawn from the starting probability density 𝜌0 (x). Then for 𝑙 = 1, . . . , 𝐿 − 1, the

sample point x𝑙 is drawn after the transition kernel𝑇𝑙 (x𝑙−1,x𝑙 ). The corresponding weight𝑤 of

the sequence {x, . . . ,x𝐿−1} is:

𝑤 =
𝜌1 (x0)
𝜌0 (x0)

· · · 𝜌 (x𝐿−1)
𝜌𝐿−1 (x𝐿−1)

∝ exp (−𝑈1 (x0))
exp (−𝑈0 (x0))

· · · exp (−𝑈 (x𝐿−1))
exp (−𝑈𝐿−1 (x𝐿−1))

, (1.24)

which satisfies detailed balance condition by construction:

𝜌0 (x0)𝑇1 (x0,x1) · · ·𝑇𝐿−1 (x𝐿−2,x𝐿−1)𝑤 = 𝜌 (x𝐿−1)𝑇𝐿−1 (x𝐿−1,x𝐿−2) · · ·𝑇1 (x1,x0) , (1.25)

which means that the probability density of the sequence {x0, . . . ,x𝐿−1} with the weight𝑤 is the

same as the probability density of the reverse sequence {x𝐿−1, . . . ,x0}. Therefore an estimation

of a test function 𝜙 (x) can be made from 𝑁 trajectories from 𝑁 independent starting points
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{
x(𝑖)0

}𝑁
𝑖=1

with the corresponding weights
{
𝑤 (𝑖)

}𝑁
𝑖=1 by

𝜙 =

∑𝑁
𝑖=1 𝜙

(
x(𝑖)
𝐿−1

)
𝑤 (𝑖)∑𝑁

𝑖=1𝑤
(𝑖)

. (1.26)

When 𝑁 →∞, the estimator 𝜙 converges to the ideal expectation ⟨𝜙⟩.

Ourwork in Chapter 2 follows from a related idea derived by Rotskoff andVanden-Eijnden [60],

who proposed a class of unbiased nonequilibrium importance sampling (NEIS) estimators; those

methods use carefully chosen dynamics such that the probability density is transported to the

rare regions of phase space and the corresponding statistical weights can be directly obtained

through the invertible nonequilibrium dynamics. This differs from AIS, which requires computa-

tion of a ratio of sample means. Moreover, the unbiased nonequilibrium estimator always has a

smaller variance compared to the direct sampling in equilibrium dynamics at the nontrivial cost

of generating nonequilibrium trajectories.

1.3.1 Derivation of NEIS estimator

The unbiased NEIS estimator is derived as follows. Firstly, by the idea of importance sampling,

the expectation value of a test function 𝜙 (x) under a target probability density 𝜌 (x) can be

computed by the average of samples drawn from another probability density 𝜌ne (x) with some

reweighting factors.

⟨𝜙⟩ ≡
∫

𝜙 (x) 𝜌 (x) 𝑑x =

∫
𝜙 (x) 𝜌 (x)
𝜌ne (x)

𝜌ne (x) 𝑑x ≡
〈
𝜙𝜌

𝜌ne

〉
ne

(1.27)

Samples are drawn under nonequilibrium stationary density 𝜌ne (x) by the initiate-then-

propagate algorithm: starting points x are drawn under starting probability density 𝜌 (x) and

then each starting point is propagated under dynamics (Eq. 1.20) forward and backward in time

until the trajectory hits some appropriate fixed target sets such as the boundary of Γ or the whole

13



phase space R𝑑 . With this algorithm, the nonequilibrium average can be expressed as

⟨𝜙⟩ne =
1
⟨𝜏⟩

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)
𝜙 (X (𝑡,x)) 𝑑𝑡𝜌 (x) 𝑑x, (1.28)

where 𝜏+ (x) ⩾ 0 and 𝜏− (x) ⩽ 0 are the first time when the trajectory starting at x hits the

boundary 𝜕Γ forward or backward in time respectively. ⟨𝜏⟩ = ⟨𝜏+⟩ − ⟨𝜏−⟩ serves as the normal-

ization factor of the stationary nonequilibrium probability density by letting 𝜙 (x) = 1.

Separately, the nonequilibrium average can be defined as

⟨𝜙⟩ne ≡
∫
Γ
𝜙 (x) 𝜌ne (x) 𝑑x. (1.29)

By changing variable fromX (𝑡,x) → x and 𝑡 → −𝑡 , Eq. 1.28 becomes

⟨𝜙⟩ne =
1
⟨𝜏⟩

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)
𝜙 (X (𝑡,x)) 𝑑𝑡𝜌 (x) 𝑑x

=

∫
Γ
𝜙 (x) 1

⟨𝜏⟩

∫ 𝜏+ (x)

𝜏− (x)
𝜌 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡 𝑑x.

(1.30)

Then the stationary probability density 𝜌ne (x) is recognized as

𝜌ne (x) =
1
⟨𝜏⟩

∫ 𝜏+ (x)

𝜏− (x)
𝜌 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡, (1.31)

where 𝐽 (𝑡,x) is the Jacobian of the variable transformation

𝐽 (𝑡,x) ≡ exp
(∫ 𝑡

0
∇ · b (X (𝑠,x)) 𝑑𝑠

)
, (1.32)

for which a detailed derivation can be found in Sec. 2.8.1. The physical interpretation of the

Jacobian is the factor that describes changes of phase space volume over time 𝑡 through the

invertible dynamics (Eq. 1.20).

14



A similar result was also found by Tuckerman and coworkers [61, 62], where the Jacobian

was understood as the determinant of the transformation matrix from the starting coordinate x0

to the coordinate x𝑡 after time 𝑡 under the flow b. Then an invariant measure of the phase space

volume under the time-independent vector field b can be established as

exp (−𝑤 (x𝑡 , 𝑡)) 𝑑x𝑡 = exp (−𝑤 (x0, 0)) 𝑑x0, (1.33)

where 𝑤 (x, 𝑡) is the indefinite time integral of the compressibility ∇ · b of a non-Hamiltonian

system. Here
√︁
𝑔 (x𝑡 , 𝑡) ≡ exp (−𝑤 (x𝑡 , 𝑡)) can be understood as the determinant of the metric

tensor𝐺 (x𝑡 , 𝑡) obtained from𝐺 (x0, 0) via the coordinate transformation x0 → x𝑡 and𝐺 (x0, 0)

is the metric tensor that describes the geometry of the phase space.

One important property from the definition of the Jacobian is

𝐽 (𝑠 + 𝑡,x) ≡ exp
(∫ 𝑠+𝑡

0
∇ · b (X (𝑢,x)) 𝑑𝑢

)
= exp

(∫ 𝑡

0
∇ · b (X (𝑢,x)) 𝑑𝑢

)
exp

(∫ 𝑠+𝑡

𝑡

∇ · b (X (𝑢,x)) 𝑑𝑢
)

= exp
(∫ 𝑡

0
∇ · b (X (𝑢,x)) 𝑑𝑢

)
exp

(∫ 𝑠

0
∇ · b (X (𝑢 + 𝑡,x)) 𝑑𝑢

)
= exp

(∫ 𝑡

0
∇ · b (X (𝑢,x)) 𝑑𝑢

)
exp

(∫ 𝑠

0
∇ · b (X (𝑢,X (𝑡,x))) 𝑑𝑢

)
≡ 𝐽 (𝑡,x) 𝐽 (𝑠,X (𝑡,x)) .

(1.34)

With the expression of the stationary nonequilibrium probability density (Eq. 1.31), Eq. 1.27
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becomes

⟨𝜙⟩ =
〈
𝜙𝜌

𝜌ne

〉
ne

=
1
⟨𝜏⟩

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x))
𝜌ne (X (𝑡,x))

𝑑𝑡𝜌 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x))∫ 𝜏+ (X (𝑡,x))
𝜏− (X (𝑡,x)) 𝜌 (X (𝑠,X (𝑡,x))) 𝐽 (𝑠,X (𝑡,x)) 𝑑𝑠

𝑑𝑡𝜌 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡𝜌 (x) 𝑑x

=

〈∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
.

(1.35)

With the equality in Eq. 1.35, we can define the so-called unbiased NEIS estimator as in

Eq. 1.36. For each starting points x drawn under target probability density 𝜌 (x), the estimation

of a test function 𝜙 (x) is computed based on the trajectory generated by x under an invertible

nonequilibrium dynamics (Eq. 1.20). This unbiased nonequilibrium estimator is unbiased by the

construction itself and is valid for any target probability density 𝜌 (x) and any invertible dy-

namics (Eq. 1.20). Moreover, it is self-normalized and it only requires knowledge of the starting

density 𝜌 (x) up to a normalization constant.

𝜙neq (x) ≡
∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 (1.36)

Furthermore, the equality in Eq. 1.35 establishes a connection between the expectation value

of a test function 𝜙 (x) under equilibrium probability density 𝜌 (x) and the expectation value of

a test function 𝜙 (x) under a nonequilibrium process. Then it can be proved that the unbiased

NEIS estimator (Eq. 1.36) has a smaller variance than that of the direct estimator by Jensen’s
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inequality [63].

Var
[
𝜙neq

]
≡

〈��𝜙neq��2〉 − 〈
𝜙neq

〉2
=

〈��𝜙neq��2〉 − ⟨𝜙⟩2
=

〈������
∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

������
2〉
− ⟨𝜙⟩2

⩽

〈∫ 𝜏+ (x)

𝜏− (x)

𝜙2 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
− ⟨𝜙⟩2

=
〈
𝜙2〉 − ⟨𝜙⟩2 ≡ Var [𝜙]

(1.37)

Note that during the proof in Eq. 1.37, we take it as granted that the variance of this unbiased

NEIS estimator is defined as in the first line of Eq. 1.37. However, this is not always true as we

will see in Ch. 3, this trivial and naive definition of variance will lead to some unphysical results

when we generalize unbiased NEIS estimators.

In practice, an estimation is made from trajectories generated by starting points {x𝑖}𝑁𝑖=1 drawn

under target probability density 𝜌 (x):

⟨𝜙⟩ ≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+ (x𝑖 )
𝜏− (x𝑖 ) 𝜙 (X (𝑡,x𝑖)) 𝜌 (X (𝑡,x𝑖)) 𝐽 (𝑡,x𝑖) 𝑑𝑡∫ 𝜏+ (x𝑖 )

𝜏− (x𝑖 ) 𝜌 (X (𝑠,x𝑖)) 𝐽 (𝑠,x𝑖) 𝑑𝑠
, (1.38)

and the estimation is exact when 𝑁 → ∞. Since the processes of generating trajectory from

the starting point x𝑖 and the nonequilibrium estimation 𝜙neq (x𝑖) at the starting point x𝑖 are

independent, these processes can be done in parallel on high performance computing resources

to decrease time to solution.

As described, it is not stated what dynamics would work well for this estimator, nor which

would easily permit the calculation of 𝐽 (𝑡,x𝑖). The idea from Ref. [60] is to construct a dynamics

that takes one from an easy to sample high-temperature distribution and then descends to the

regions of phase space one cares about. They proposedwhat we term a “quench” dynamics, which
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for x = (q,p) ∈ R2𝑑 , is given by:


¤q = M−1p

¤p = −∇𝑈 (q) − 𝛾p
, (1.39)

where q ∈ R𝑑 are the positions of system, p ∈ R𝑑 are the momenta of system, M is the diagonal

mass matrix, ¤ is the time derivative,∇ ≡
[
𝜕
𝜕𝑞1
, . . . , 𝜕

𝜕𝑞𝑑

]𝑇
is the position gradient and 𝛾 ∈ R is the

friction constant.

There are several advantages of using “quench” dynamics (Eq. 1.39).

• The functional form of the “quench” dynamics is simple, which is just Langevin dynamics

without random force term. Hence it is easy to implement.

• The corresponding Jacobian of the “quench” dynamics is simple and does not depend on

the starting coordinate x.

𝐽 (𝑡,x) = exp (−𝑑𝛾𝑡), (1.40)

where 𝑑 is the degrees of freedom of system.

• The “quench” dynamics is dissipative. Compared to equilibrium dynamics, high energy

region and low energy region is more likely to be sampled under “quench” dynamics in

backward time or forward time respectively.

¤𝐸 = ∇𝑈 (q) · ¤q +M−1p · ¤p = −𝛾 |p|2 ⩽ 0 (1.41)

• When starting points x are drawn uniformly and let Γ = {x : ℋ (x) ⩽ 𝐸max < +∞}. Then

volume of phase space 𝑉 (𝐸) can be estimated up to a constant.

𝑉 (𝐸)
𝑉 (𝐸max)

≈ 1
𝑁

𝑁∑︁
𝑖=1

exp
(
−𝑑𝛾

(
𝜏𝐸 (x𝑖) − 𝜏− (x𝑖)

))
, (1.42)
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where 𝜏𝐸 (x) is the first time when total energy of system ℋ
(
X

(
𝜏𝐸 (x) ,x

) )
= 𝐸 start-

ing at x and evolved under “quench” dynamics (Eq. 1.39). Moreover, 𝜏𝐸 (x) is unique by

intermediate value theorem [64] since the “quench” dynamics is dissipative.

• The “quench” dynamics can be generalized to quench a subset of interest among the whole

phase space. For instance, a solute-“quench” dynamics, which only quenches the solute

part of the system, is given by:



¤qsolute = M−1
solutepsolute

¤psolute = −∇solute𝑈 (q) − 𝛾psolute

¤qsolvent = M−1
solventpsolvent

¤psolvent = −∇solvent𝑈 (q)

, (1.43)

and the corresponding Jacobian 𝐽 (𝑡,x) = exp (−𝑑solute𝛾𝑡), where 𝑑solute ≪ 𝑑 is the degree

of freedom of the solute part.

1.3.2 Classification of NEIS estimator

Following work fromCao and Vanden-Eijnden [65], we will classify unbiased NEIS estimators

into two groups based on integral limit with respect to time. As shown in Eq. 1.44, when integral

limits are two finite values (not necessarily positive or negative), the NEIS estimators are termed

finite time nonequilibrium importance sampling (FTNEIS) estimators, andwhen integral limits are

negative infinity and positive infinity, theNEIS estimators are termed infinite time nonequilibrium

importance sampling (ITNEIS) estimators.


𝜙FTNEIS
neq (x) =

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

𝜙 ITNEIS
neq (x) =

∫ +∞

−∞

𝜙 (X (𝑡,x)) 𝜌 (X (𝑡,x)) 𝐽 (𝑡,x)∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

, (1.44)
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where 𝜌 (x) is the target probability density and 𝜌0 (x) is the starting probability density from

which starting points x are drawn. Note that in the original NEIS estimator (Eq. 1.36), target

probability should be the same as starting probability and an importance sampling (IS)-like esti-

mator 𝜙 IS ≡ 𝜙𝜌1
𝜌0

is used to estimate a test function 𝜙 (x) in an arbitrary target probability density

𝜌1 (x) from trajectories generated by starting points drawn under starting probability density

𝜌0 (x) with invertible dynamics (Eq. 1.20). Besides, if simulations are restrained within a lower

boundary and an upper boundary and invertible dynamics is carefully chosen so that there is at

most one intersection point between each boundary and the trajectory, then the unbiased ITNEIS

estimator reduces to the original unbiased NEIS estimator (Eq. 1.36).

There are three critical properties, which have been proved in Eq. 1.21, Eq. 1.34 and Sec. 2.8.1,

that will be frequently used in the proof regarding NEIS estimators.

• X (𝑠,X (𝑡,x)) = X (𝑠 + 𝑡,x)

• 𝐽 (𝑠,X (𝑡,x)) 𝐽 (𝑡,x) = 𝐽 (𝑠 + 𝑡,x)

• y ≡X (𝑡,x) ⇒ 𝑑y = 𝐽 (𝑡,x) 𝑑x

The following proof shows that FTNEIS estimators and ITNEIS estimators are unbiased.

〈
𝜙FTNEIS
neq

〉
0 ≡

∫
Γ
𝜙FTNEIS
neq (x) 𝜌0 (x) 𝑑x

=

∫
Γ
𝜌0 (x)

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 𝑑x

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡,y))∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,X (−𝑡,y))) 𝐽 (𝑠,X (−𝑡,y)) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡,y)) 𝐽 (−𝑡,y)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠 − 𝑡,y)) 𝐽 (𝑠 − 𝑡,y) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡,y)) 𝐽 (−𝑡,y)∫ 𝜏+

𝜏−
𝜌0 (X (−𝑠, y)) 𝐽 (−𝑠, y) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y) 𝑑y ≡ ⟨𝜙⟩1

(1.45)
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〈
𝜙 ITNEIS
neq

〉
0 ≡

∫
Γ
𝜙 ITNEIS
neq (x) 𝜌0 (x) 𝑑x

=

∫
Γ
𝜌0 (x)

∫ +∞

−∞

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 𝑑x

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ +∞

−∞

𝜌0 (X (−𝑡,y))∫ +∞
−∞ 𝜌0 (X (𝑠,X (−𝑡,y))) 𝐽 (𝑠,X (−𝑡,y)) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ +∞

−∞

𝜌0 (X (−𝑡,y)) 𝐽 (−𝑡,y)∫ +∞
−∞ 𝜌0 (X (𝑠 − 𝑡,y)) 𝐽 (𝑠 − 𝑡,y) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y)

∫ +∞

−∞

𝜌0 (X (−𝑡,y)) 𝐽 (−𝑡,y)∫ +∞
−∞ 𝜌0 (X (−𝑠,y)) 𝐽 (−𝑠,y) 𝑑𝑠

𝑑𝑡 𝑑y

=

∫
Γ
𝜙 (y) 𝜌1 (y) 𝑑y ≡ ⟨𝜙⟩1

(1.46)

Another significant contribution from Ref. [65] is the finding of the optimal flow condition

regarding unbiased ITNEIS estimators with given starting probability density 𝜌0 (x) and given

target probability density 𝜌1 (x):∫ +∞

−∞
𝜌0 (X (𝑡,x)) 𝐽 opt (𝑡,x) 𝑑𝑡 =

∫ +∞

−∞
𝜌1 (X (𝑡,x)) 𝐽 opt (𝑡,x) 𝑑𝑡 . (1.47)

Under the optimal flow condition (Eq. 1.47), the performance of the unbiased ITNEIS estimator

is no worse than that of the equilibrium counterpart under target probability density 𝜌1 (x) by

Jensen’s inequality [63].

Var
[
𝜙 ITNEIS
neq

]
≡

〈���𝜙 ITNEIS
neq

���2〉
0
−

〈
𝜙 ITNEIS
neq

〉2
0 =

〈���𝜙 ITNEIS
neq

���2〉
0
− ⟨𝜙⟩21

=

∫
Γ
𝜌0 (x)

(∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

)2

𝑑x − ⟨𝜙⟩21

⩽
∫
Γ
𝜌0 (x)

∫ +∞
−∞ 𝜙2 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝑑x − ⟨𝜙⟩21

=
〈
𝜙2〉

1 − ⟨𝜙⟩
2
1 ≡ Var [𝜙]

(1.48)

In Chapter 2 we will show how the quench dynamics and NEIS estimators can be used on
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molecular systems to estimate free energies and partition functions. In subsequent chapters, we

will make use of the preceding definitions to expand upon these approaches, and also to estimate

basin volumes through trajectories.
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2 | Computing eqilibrium free energies

through a noneqilibriumqench

This chapter has been adapted from Ref. [66].

2.1 Abstract

Many methods to accelerate sampling of molecular configurations are based on the idea that

temperature can be used to accelerate rare transitions. These methods typically compute equi-

librium properties at a target temperature using reweighting or through Monte Carlo exchanges

between replicas at higher temperatures. A recent paper [60] demonstrated that accurate equilib-

rium densities of states can also be computed through a nonequilibrium “quench” process, where

sampling is performed at a higher temperature to encourage rapid mixing and then quenched

to lower energy states with dissipative dynamics. Here we provide an implementation of the

quench dynamics in LAMMPS and evaluate a new formulation of nonequilibrium estimators for

the computation of partition functions or free energy surfaces (FESs) of molecular systems. We

show that the method is exact for a minimal model of 𝑁 -independent harmonic springs, and use

these analytical results to develop heuristics for the amount of quenching required to obtain ac-

curate sampling. We then test the quench approach on alanine dipeptide, where we show that it

gives an FES that is accurate near the most stable configurations using the quench approach but
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disagrees with a reference umbrella sampling calculation in high FE regions. We then show that

combining quenching with umbrella sampling allows the efficient calculation of the free energy

in all regions. Moreover, by using this combined scheme, we obtain the FES across a range of tem-

peratures at no additional cost, making it much more efficient than standard umbrella sampling

if this information is required. Finally, we discuss how this approach can be extended to solute

tempering and demonstrate that it is highly accurate for the case of solvated alanine dipeptide

without any additional modifications.

2.2 Introduction

A major challenge in molecular dynamics (MD) simulations is poor sampling of conforma-

tional landscapes because free energy barriers that are large relative to 𝑘B𝑇 are traversed at rates

much lower than the duration of a typical simulation [17, 67]. A wide variety of approaches

relying on sampling of equilibrium distributions have been proposed [68] to circumvent this

problem, which can be generally classified into (a) those which seek to lower free energy barriers

by adding a bias or changing the potential that is being sampled [33, 35], or (b) those that use

higher temperatures of all or some degrees of freedom to accelerate transitions [41, 42]. Other

approaches harness nonequilibrium fluctuation theorems to estimate equilibrium free energies

by averaging over many realizations of a nonequilibrium transformation [57, 69, 70]. However,

these non-equilibrium approaches have not been widely adopted for chemical problems because

they are difficult to converge, due to the large variance in work performed and the largest con-

tributions to the equilibrium average being dominated by rare fluctuations.

Ref. [60] proposes a class of estimators based on an exact reweighting of the samples gath-

ered during a nonequilibrium process that follows a dissipative dynamical scheme, starting with

configurations that are well sampled from an equilibrium density, e.g. the Boltzmann distribution

(see also Ref. [71], Ch. 5 and Refs. [72] and [65]). Conceptually, facile sampling at high tempera-
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ture allows mixing between free energy basins and then the process of ‘quenching’ allows one to

map out the lower energy portion of the free energy basins. This method possesses several advan-

tages; it is unbiased and only requires the knowledge of the starting probability density 𝜌0 up to a

constant, unlike the annealed importance sampling [59] (AIS) method, which requires computing

a posterior ratio of sample means. Furthermore, it was proven in Ref. [60] that the estimator has

lower variance than a direct estimator and simulations can be run in parallel, which makes the

methodology naturally suited to the architecture of high-performance computing clusters. The

aim of this chapter is to investigate how to use this method to compute partition functions and

FESs for molecular systems.

To this end, we derive a formulation of these nonequilibrium quench estimators for molecular

systems and critically assess the efficacy of this approach. We demonstrate that the method is

exact for a harmonic system where analytical results are available, and, in doing so, we obtain

heuristic rules for the required amount of sampling. We then demonstrate on the simple test

system of alanine dipeptide that, because the method emphasizes low free energy regions, it

is not a competitive approach for computing full free-energy surfaces. Nevertheless, we find

that a combination of quenching with umbrella sampling (US) provides a highly efficient way to

compute a full FES for this system, simultaneously giving FESs at many different temperatures.

Finally, we expand upon the quench method and show that it can be used as a nonequilibrium

solute-tempering approach with highly accurate results for a solvated peptide. The quenching

dynamics are implemented in LAMMPS [73, 74], and analysis methods provided as open source

Python scripts, meaning that our method can be easily deployed on other problems.
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2.3 Theory and Methods

2.3.1 An unbiased non-eqilibrium estimator from invertible

non-eqilibrium dynamics

Let us denote the microstate of the system in phase space by the vector x = (q,p) ∈ R2𝑑

and q,p ∈ R𝑑 , where 𝑑 ≡ 3𝑛 is the number of degrees of freedom (DOF) in the 𝑛-atom system.

An average observable property 𝜙 of the system can by computed as an integral over all possible

configurations, weighted by the equilibrium probability density [17, 67],

⟨𝜙⟩ =
∫
𝑑x 𝜙 (x) 𝜌 (x)∫
𝑑x 𝜌 (x)

(2.1)

A typical example of 𝜌 (x) would be the Boltzmann distribution,

𝜌𝛽 (x) =
𝑒−𝛽ℋ(x)∫
𝑑x 𝑒−𝛽ℋ(x)

≡ 𝑒
−𝛽ℋ(x)

𝑄 (𝛽) , (2.2)

where 𝛽 = 1
𝑘𝐵𝑇

, 𝑘𝐵 is Boltzmann’s constant,𝑇 is the temperature, andℋ is the Hamiltonian (total

energy function) of the system [17, 67]. Here, 𝑄 (𝛽) is the canonical partition function.

To compute equilibrium averages using molecular dynamics, we typically replace the expec-

tation (2.1) by a time average along a trajectory X𝑒 (𝑡) along which configurations appear in

proportion to 𝜌𝛽 (x). This can be done using Markov chain Monte Carlo or molecular dynamics

with thermostat [17, 67]. In this case,

⟨𝜙⟩ ≈ 1
𝜏

∫ 𝜏

0
𝑑𝑡𝜙 (X𝑒 (𝑡)) (2.3)

with equality in the limit as 𝜏 →∞.

As an alternative to running a very long trajectory, if we already had configurations well
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sampled from 𝜌 (x), thenwe could also compute this same average by an “initiate-and-propagate"

procedure, where we draw starting points X𝑒
𝑖 (0) from 𝜌 (x) and propagate our equations of

motion to get 𝑁 trajectories of length 𝜏short, {X𝑒
𝑖 (𝑡)}, computing observables as an average over

the trajectory and over initial configurations,

⟨𝜙⟩ ≈ 1
𝑁

𝑁∑︁
𝑖=1

1
𝜏short

∫ 𝜏short

0
𝑑𝑡𝜙

(
X𝑒
𝑖 (𝑡)

)
(2.4)

with equality in the limit as 𝑁 → ∞ for any 𝜏short > 0. The advantage of such a procedure

would be that each trajectory can be simulated independently, making the algorithm trivially

parallelizable.

Now suppose we wanted to do such a procedure, but the dynamics do not sample the station-

ary distribution 𝜌 , using e.g. the differential equation

¤X (𝑡) = b (X (𝑡)) . (2.5)

where b (x) is a vector-field to be specified that does not preserves 𝜌 (x), i.e. ∇· (b (x) 𝜌 (x)) ≠ 0

where ∇ corresponds to the phase space gradient { 𝜕
𝜕𝑞1
, 𝜕
𝜕𝑞2
, ..., 𝜕

𝜕𝑞𝑑
, 𝜕
𝜕𝑝1
, 𝜕
𝜕𝑝2
, ..., 𝜕

𝜕𝑝𝑑
}. The change

in phase space volume associated with a nonequilibrium dynamical process is quantified by a

Jacobian factor,

𝐽 (𝑡) = exp
(∫ 𝑡

0
∇ · b (X (𝑠)) 𝑑𝑠

)
, (2.6)

as derived in Appendix 2.8.1.

Ref. [60] makes use of the fact that Eq. 2.4 can be extended to this more general case of

motion generated by b by introduction of the density scaled by this Jacobian factor, as long as

points can be sampled from the initial density 𝜌 (x). In this case, estimates are computed for

a subset of all phase space by propagating the non-equilibrium trajectories until they reach the

boundaries of that subset of phase space, which in practice was done by terminating trajectories
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at fixed maximum and minimum energy values 𝐸max and 𝐸min. The resulting estimator over 𝑁

trajectories is given by,

⟨𝜙⟩ ≈ lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+𝑖 (𝐸min)
𝜏−
𝑖
(𝐸max) 𝑑𝑡𝜙 (X𝑖 (𝑡)) 𝜌 (X𝑖 (𝑡)) 𝐽 (𝑡)∫ 𝜏+

𝑖
(𝐸min)

𝜏−
𝑖
(𝐸max) 𝑑𝑡𝜌 (X𝑖 (𝑡)) 𝐽 (𝑡)

. (2.7)

where 𝜏+𝑖 (𝐸min) and 𝜏−𝑖 (𝐸max) are the times that trajectory 𝑖 reached the fixed energy boundaries

when propagating the non-equilibrium dynamics forwards and backwards in time (we emphasize

that here the integration times vary for each starting point).

As in Ref. [60], we use the equations of motion corresponding to zero temperature Langevin

dynamics, which we term “quench” dynamics,


¤Q = M−1P

¤P = −∇𝑈 (Q) − 𝛾P
, (2.8)

for which the Jacobian is

𝐽 (𝑡) = exp (−𝑑𝛾𝑡). (2.9)

This method is easy to implement for molecular systems by adapting the BAOAB scheme [75]

(see Appendix 2.8.2).

Backwards-in-time trajectories from initial points are generated by following the same dy-

namical scheme using a negative 𝛾 , after reversing the initial momenta. This is derived by apply-

ing the equations of motion to the time-reversed phase space coordinates Q𝑅 (𝑡) = Q (−𝑡) and

P 𝑅 (𝑡) = −P (−𝑡).

Because, Eq. 2.8 is dissipative, we can use it to propagate trajectories from high energy to low

energy, or from low energy to high energy using a negative 𝛾 . With this scheme, we can com-

pute Boltzmann averages at the starting inverse temperature 𝛽0 by first sampling from 𝜌𝛽0 (x) ∝

exp (−𝛽0ℋ (x)) and propagating 𝑁 trajectories with our quench algorithm forwards and back-
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wards in time, using the formula

⟨𝜙⟩0 ≈
1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+𝑖
𝜏−
𝑖

𝑑𝑡𝜙 (X𝑖 (𝑡)) 𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡∫ 𝜏+
𝑖

𝜏−
𝑖

𝑑𝑡𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡
(2.10)

Here we no longer indicate the dependence of 𝜏±𝑖 on energy for brevity. An extension of Eq. 2.10

to calculate averages at other temperatures above and below 𝛽0 will be discussed in the next

section.

We note that Eq. 2.10 is a biased estimator since it computes expectations over 𝜌𝛽0 conditional

onℋ (x) ∈ [𝐸min, 𝐸max]. To make this bias negligible, we can adjust the values of 𝐸min and 𝐸max.

To this end, notice that during a (forward) quench, the value of total energy 𝐸tot = ℋ (X (𝑡)) will

decrease while 𝑑𝛾𝑡 will increase, resulting in a time where the arguments of the exponentials are

minimized that depends on 𝛽0. In order to get a converged average, this time must be contained

within the range (𝜏−, 𝜏+), and so the energy levels, in particular 𝐸min, must be chosen such this is

the case. Our method for doing so is discussed in Sec. 2.5.

2.3.2 Calculations of free energies and partition functions

As mentioned earlier, the principal challenge of computing quantities fromMD simulations is

that high free energy barriers at a temperature of interest prevent proper sampling of all relevant

configurations with proper weights. Since it can be easier to sample at high temperature, it is

tempting to sample at high temperature, and directly reweight samples to lower temperature; for

example, to estimate 𝑄 (𝛽) we can write

𝑄 (𝛽) =
∫

𝑑x𝑒−𝛽ℋ(x) =

∫
𝑑x𝑒−𝛽ℋ(x)

(
𝑒−𝛽0ℋ(x)

𝑒−𝛽0ℋ(x)

)
=

∫
𝑑x𝑒 (𝛽0−𝛽)ℋ(x)𝑒−𝛽0ℋ(x) .

(2.11)
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Hence, we can reweight samples from 𝛽0 to evaluate the relative value of 𝑄 (𝛽),

𝑄 (𝛽)
𝑄 (𝛽0)

= ⟨𝑒 (𝛽0−𝛽)ℋ⟩0, (2.12)

which the central idea of free energy perturbation [67]. The challenge is that samples from 𝜌𝛽0 (x)

do not have good overlap with 𝜌𝛽 (x) unless 𝛽 ≈ 𝛽0, so this estimate could have high variance in

practice, which can be mitigated using simulated annealing or simulated tempering [76–78].

The same quantity in Eq. 2.12 can be computed with the quench estimator (Eq. 2.10),

𝑄 (𝛽)
𝑄 (𝛽0)

≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+𝑖
𝜏−
𝑖

𝑑𝑡𝑒−𝛽ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡∫ 𝜏+
𝑖

𝜏−
𝑖

𝑑𝑡𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡
. (2.13)

By quenching forwards in time, low energy samples which are more relevant at a lower tempera-

ture are generated, which should result in a much more robust calculation than reweighting from

samples generated only from 𝛽0 at equilibrium. Using a similar manipulation, we can compute

the average of any observable 𝜙 (X) at 𝛽 using samples generated from 𝛽0,

⟨𝜙⟩ = ⟨𝜙𝑒 (𝛽0−𝛽)ℋ⟩0/⟨𝑒 (𝛽0−𝛽)ℋ⟩0

≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+𝑖
𝜏−
𝑖

𝑑𝑡𝜙 (X𝑖 (𝑡)) 𝑒−𝛽ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡∫ 𝜏+
𝑖

𝜏−
𝑖

𝑑𝑡𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡

(
𝑄 (𝛽)
𝑄 (𝛽0)

)−1
,

(2.14)

where 𝑄 (𝛽) /𝑄 (𝛽0) is computed via Eq. 2.13.

For a coordinate (possibly a vector) defined by a function 𝑆 (x), the FES or potential of mean

force (PMF) is given by

𝐹 (𝑠; 𝛽) = − 1
𝛽

ln (⟨𝛿 (𝑆 − 𝑠)⟩), (2.15)

where 𝛿 is the Dirac delta function 1. Substituting in Eq.2.14 shows how we can estimate 𝐹 (𝑠; 𝛽)
1In real MD simulations, it is impossible to compute free energy at any particular 𝑠 . Rather, block function

(integrating delta function over windows) is used, and we show in Appendix 2.8.3 that free energy computed in this
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using samples from 𝛽0, which up to a constant factor gives

𝜌 (𝑠; 𝛽) ∝ 𝑒−𝛽𝐹 (𝑠;𝛽) =
〈
𝛿 (𝑆 − 𝑠) 𝑒 (𝛽0−𝛽)ℋ〉

0 . (2.16)

Using Eq. 2.10, we then obtain our final result, which shows how the FES can be computed using

quench trajectories,

𝑒−𝛽𝐹 (𝑠,𝛽) ≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+𝑖
𝜏−
𝑖

𝑑𝑡𝛿 (𝑆 (X𝑖 (𝑡)) − 𝑠) 𝑒−𝛽ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡∫ 𝜏+
𝑖

𝜏−
𝑖

𝑑𝑡𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡
(2.17)

This estimator allows us to compute the PMF at a range of temperatures 𝛽 above and below 𝛽0

using a single set of trajectories.

Because the exponential decay 𝑒−𝑑𝛾𝑡 suppresses contributions at long forwards times and the

exponential increase ofℋ (X𝑖 (𝑡)) does so for large negatives times, we also considered running

simulations for fixed forwards and backwards times where 𝜏+ ≫ 𝜏+𝑖 (𝐸min) and 𝜏− ≪ 𝜏−𝑖 (𝐸max).

In this case,

𝑒−𝛽𝐹 (𝑠,𝛽) ≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+

𝜏−
𝑑𝑡𝛿 (𝑆 (X𝑖 (𝑡)) − 𝑠) 𝑒−𝛽ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡∫ 𝜏+

𝜏−
𝑑𝑡𝑒−𝛽0ℋ(X𝑖 (𝑡))−𝑑𝛾𝑡

, (2.18)

where now the integration limits are fixed for all runs. In Sec. 2.5 we will give a heuristic for

how long quench trajectories should be run. In practice, to generate results we run fixed length

simulations using that heuristic from many initial points, then pick energy cutoffs, and then

use the estimator given by Eq. 2.17, which did prove to be more accurate than Eq. 2.18. This

strategy allowed us to test both estimators and works well in practice, but does require more

total simulation time than if a perfect energy cutoff were known a priori.

Finally, we note that Ref. [65] proposes another exact estimator from the same type of trajec-

way has an error with magnitude 𝒪
(
Δ𝑠2) , where Δ𝑠 is the width of windows.
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tories,

⟨𝜙⟩ ≈ 1
𝑁

𝑁∑︁
𝑖=1

∫ 𝜏+

𝜏−
𝑑𝑡
𝜙 (X𝑖 (𝑡)) 𝜌 (X𝑖 (𝑡)) 𝐽 (𝑡)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝑑𝑡

′𝜌 (X𝑖 (𝑡 ′)) 𝐽 (𝑡 ′)
, (2.19)

where 𝜏+ and 𝜏− are constant. We also evaluate this formula for a test case in the Supporting

Information, but find that it is more difficult to use in practice for molecular systems because (a)

it requires obtaining data from 𝜏− − 𝜏+ to 𝜏+ − 𝜏−, which is a strictly larger time window than in

Eq. 2.17, and (b) the long reverse quench to time 𝜏− − 𝜏+ can cause the MD simulation to become

unstable as the kinetic energy grows exponentially, resulting in simulations crashing. Hence we

do not pursue it further in this chapter.

2.4 Implementation

We implemented quench dynamics in LAMMPS [73, 74] using the procedure described in

Appendix 2.8.2, with a user-defined “fix”, and run trajectories using the LAMMPS python inter-

face. Then run many parallel trajectories in a Python framework using the parallel scripting

language Parsl [79], which also interfaces with common high-performance computing queu-

ing systems. We also perform analysis in parallel using parsl. LAMMPS source code, as well

as all run and analysis scripts, are provided in a github repository for this chapter (https:

//github.com/hocky-research-group/quench_paper_2023).

2.5 Results

2.5.1 Computing the partition function of independent harmonic

springs throughqenching

To confirm the validity of the quench approach for a molecular system, as well as to check

our implementation, we first start with a system for which we know the ground truth. We chose
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to study a system of𝒩 independent harmonic springs, with a Hamiltonian defined by,

ℋ (X) =
𝒩∑︁
𝑖=1

(
|P𝑖 |2
2𝑚
+ 1

2
𝑚𝜔2 |Q𝑖 |2

)
(2.20)

Because these springs are independent, this is equivalent to 3𝒩 one-dimensional harmonic

oscillators defined by the simple Hamiltonian,

ℋ (𝑞, 𝑝) = 𝑝2

2𝑚
+ 1

2
𝑚𝜔2𝑞2 (2.21)

The partition function for this system is separable such that,

𝑄3𝒩 (𝛽) = 𝑄3𝒩
1 (𝛽) =

(∬
𝑑𝑞𝑑𝑝𝑒−

𝛽𝑝2
2𝑚 −

𝛽

2𝑚𝜔
2𝑞2

)3𝒩

=

(√︄
2𝜋𝑚
𝛽
×

√︄
2𝜋

𝛽𝑚𝜔2

)3𝒩

=

(
2𝜋
𝛽𝜔

)3𝒩 (2.22)

We can therefore benchmark our quench approach by computing the ratio of partition func-

tions at two different temperatures using Eq. 2.13 and compare to the exact value, which is given

by (𝛽0/𝛽)3𝒩 .

Using LAMMPS, we sample 𝒩 independent harmonic springs in 3D with identical masses

𝑚 = 1.0 and identical oscillation frequencies 𝜔 =
√

5, in reduced units. We first generate 2000

starting points using Langevin dynamics [80] with friction coefficient 𝛾𝐿𝐷 = 0.01 and time step

Δ𝑡 = 0.001 in reduced units. To do so, we first equilibrate the system for 107 steps (𝜏 = 104 in

reduced LJ time units) at 𝛽 = 1. Then we run production simulation for 2 × 107 steps and save

2000 starting points for further “quench” simulations.

In Fig. 2.1, we show the behavior of the energy of the system when running quench simula-

tions using the EOM described by Eq. 2.8 forward and backwards in time, for several values of

𝛾quench. We observe an overall exponential decay of average total energy at small 𝛾 with respect
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to 𝛾𝑞𝑢𝑒𝑛𝑐ℎ𝑡 , a unitless “time” that we find serves as a good progress coordinate. In contrast, when

𝛾𝑞𝑢𝑒𝑛𝑐ℎ is large, we observe large deviation from standard exponential decay, with a low-frequency

oscillation.
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Figure 2.1: Mean total energy (top) and mean kinetic energy (bottom) with respect to reduced time
(𝛾𝑞𝑢𝑒𝑛𝑐ℎ𝜏) for 𝒩 = 1000 springs, varying 𝛾quench, scaled by the equilibrium energy given by equipartition.
Quenching is performed from 2000 starting points. Circles indicate the starting energies before quenching
forwards and backwards in time. For small 𝛾𝑞𝑢𝑒𝑛𝑐ℎ , mean total energy and mean kinetic energy follow an
exponential decay with time constant 𝛾−1 (dashed line).

To understand this behavior, we can solve the EOM of a 1D system exactly given an initial

condition (𝑞0, 𝑝0),

𝐸 (𝑡) exp (𝛾𝑡) =
2𝑚2𝜔4𝑞2

0 + 2𝑚𝜔2𝛾𝑞0𝑝0 + 2𝜔2𝑝2
0

𝑚 (4𝜔2 − 𝛾2)

+
𝑚2𝜔2𝛾𝑞2

0 − 𝛾𝑝2
0

2𝑚
√︁

4𝜔2 − 𝛾2
sin

(√︁
4𝜔2 − 𝛾2 𝑡

)
+
𝑚2𝜔2𝛾2𝑞2

0 − 4𝑚𝜔2𝛾𝑞0𝑝0 − 𝛾2𝑝2
0

2 (4𝜔2 − 𝛾2) cos
(√︁

4𝜔2 − 𝛾2 𝑡
) (2.23)

The magnitude of the ratio between terms scales for 𝛾 < 𝜔 as 𝒪 (1) : 𝒪 (𝛾/𝜔) : 𝒪
(
𝛾2/𝜔2)

such that the first term dominates for small 𝛾 . As 𝛾 approaches 𝜔 , then oscillations appear with a

period of 𝜋
(
𝜔2/𝛾2 − 1/2

)−1/2 when plotted against 𝛾𝑡 . Similarly, we can solve an expression for
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kinetic energy, and find that in the small 𝛾 limit, the mean kinetic energy also decays exponen-

tially with respect to time. In the quasi-static quenching limit, we can approximate all springs

as independently following the same exponential decay, and therefore the sum of their energies

also decays exponentially, 𝐸 (𝑡) ≈ 𝐸 (0) 𝑒−𝛾𝑡 . For this situation, we can compute the partition

function,
𝑄 (𝛽) ∝

∫ ∞

−∞
exp

(
−𝛽𝐸0𝑒

−𝛾𝑡 − 𝑑𝛾𝑡
)
𝑑𝑡

=

∫ ∞

0

1
𝛾

exp (−𝛽𝐸0𝑢)𝑢𝑑−1 𝑑𝑢

=
(𝑑 − 1)!
𝛾

(𝛽𝐸0)−𝑑 .

(2.24)

This gives the correct result for the ratio of partition functions, (𝛽/𝛽0)−𝑑 . Moreover, we could

calculate𝑄 (𝛽) using a saddle point approach and find that the exponential term is dominated by

its value when 𝛾𝑡 = ln (𝛽/𝛽0), using the fact that 𝐸0 ≈ 𝑑/𝛽0 for Harmonic oscillators.

Because the mean kinetic energy decays exponentially with respect to time starting at a value

of𝑑/(2𝛽0), at this particularmoment 𝑡 = 𝛾−1 ln (𝛽/𝛽0) the kinetic energy obtains a value of𝑑/(2𝛽)

corresponding to a temperature 𝑇 . In real simulations it is impossible to run to infinite times, so

this harmonic model suggests that we can guess how long to run by choosing 𝛾 (𝜏+ − 𝜏−) >

|ln (𝛽/𝛽0) | for a target 𝛽 if we want to use the infinite time approximation as in Eq. 2.18. To

confirm this for the harmonic system, we show in Fig. 2.9 that convergence of the ratio of partition

functions reaches this limit where Eq. 2.18 holds once 𝛾 (𝜏+ − 𝜏−) exceeds this value (2 ln (2) ≈

1.4). When 𝛾quench approaches𝜔 and the exponential decay of energy does not hold, the partition

function ratio converges to an incorrect value.

Finally, we test the accuracy of our primary estimator Eq. 2.13. To do so, we take the same

quenches performed for Fig. 2.1 and pick 𝜏+ and 𝜏− as the maximum final energy of the 2000

forward quenches and the minimum of the 2000 reverse quenches. In Fig. 2.2 we show that our

quench estimator is highly accurate. Fig. 2.2(a) shows that the estimator gets more accurate with

an increasing number of springs, despite the increasing phase space volume that must be sampled.
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Figure 2.2: Absolute relative error in the ratio of partition functions at two different temperatures𝑇0 and
𝑇 = 1 for a system of independent harmonic springs using Eq. 2.13. (a) Error computed starting from
𝑇0 = 2 and varying the number of springs for two different quench rates. (b) Error computed for fixed
𝑁 = 1000 springs when varying starting temperature at two different quench rates. Two other estimators
are compared for this setup in Fig. 2.11.

Fig. 2.2(b) shows the effect of varying the initial temperature𝑇0, with more accurate results when

𝑇0 is higher than𝑇 as intuitively expected. Accuracy is improved substantially by decreasing the

quench rate 𝛾 , but at the expense of longer simulations.
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2.5.2 Computing the free energy surface of alanine dipeptide

Having demonstrated that we are able to compute partition functions for a toy system, we are

now interested in whether we can compute PMFs for a molecular system through a quenching

procedure (where partition functions are not a very useful quantity on their own). We first test

our approach by computing Eq. 2.17 for the test case of alanine dipeptide in vacuum, which

has two major conformations (one of which has sub-populations) separated by a relatively large

energy barrier, and whose configurations are well captured by considering its FES in the space of

two backbone dihedral angles 𝜙 and𝜓 . This FES has been extensively characterized by a number

of enhanced sampling approaches and serves as a prototypical benchmark system, although one

which is quite easy to sample for some approaches such as metadynamics.

Simulations of this molecule in vacuum were run using LAMMPS simulation package and

using CHARMM 27 force field without CMAP corrections [81]. Equilibrium simulations are

performed using LAMMPS’s Langevin dynamics thermostat with 𝛾run = 0.01ps−1 and an MD

timestep of Δ𝑡 = 1 fs. Umbrella sampling [33] was used to obtain reference free energy sur-

face (FES). Regarding umbrella sampling, a harmonic biased potential with spring constant 24.0

kcal/
(
mol · rad2) was added to 400 (20 × 20) windows along CVs given by backbone dihedral

angles (Φ,Ψ). The system was equilibrated for 400 ps at each window location, and then produc-

tion runs were performed for 2 ns in each window. FES was estimated at the target temperature

300 K using WHAM to combine the data [50], and was also computed for comparison using

EMUS [46]. Finally, for comparison, FESs were computed using Well-Tempered MetaDynamics

(WT-MetaD) [35] in PLUMED [82–84] applied to 𝜙,𝜓 with hills deposited every 500 steps, a hill

width of 0.35 radians in each direction, a hill height of 0.286807 kcal/mol, and a bias factor of

either 6 or 10 (see SI); WT-MetaD runs were performed for up to 100 ns although the FES es-

timate stopped changing within several nanoseconds. In “quench" simulations, the system was

equilibrated for 10 ns at 𝑇0 = 1200 K and 10000 starting points were drawn from a 10 ns produc-
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tion simulation with frequency every 1 ps. Fixed time simulations were performed with forward

quenches of length 3.4𝛾−1 and reverse quenches of length 0.6𝛾−1. For this length forward quench,

the final kinetic energy predicted by our exponential decay model is equivalent to approximately

𝑇 = 110 K, below where we want to estimate. Times 𝜏+𝑖 and 𝜏−𝑖 were chosen from these data by

histogramming the energies from the forward and reverse trajectories as shown in Fig. 2.12.
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Figure 2.3: A comparison of FES between umbrella sampling and “quench" method. (a) FES computed
from US at𝑇 = 300 K with 400 ns total sampling time. (b) FES computed from “quench" at𝑇 = 300 K with
𝑇0 = 1200 K with 𝛾quench = 1 × 10−4 and 104 starting points corresponding to ≈ 410 ns of total simulation
time, of which data used in computing Eq. 2.17 (including 10 ns for generating restart points) totals ≈ 226
ns. (c) Comparison of FES values on a bin-by-bin basis. While the minima are captured, the high free
energy regions are not.

Fig. 2.3 shows the comparison of FES computed by the “quench" method with 𝛾quench = 1 ×

10−4, for which the total amount of fixed time sampling was 400 ns, the same as that used in

a reference US reference, and the time used with energy cutoffs was only 287 ns (see Tab. 2.1).

While the shape of the FES was captured correctly using the “quench" method, only the lower

free energy regions were captured with high fidelity. As shown in Fig. 2.3(c), quench results

start to deviate from umbrella sampling results at approximately 8 kcal/mol≈ 13.5𝑘𝐵𝑇 . Since

this is a relatively high cutoff, it demonstrates that quench is applicable to molecular situations

where the entire FES over some coordinates is not needed. Moreover, with these simulations we

should be able to estimate FES at any temperature in the range 200 K to 2200 K based on the

amount of forward and reverse quenching performed, which would not be available with CV
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based approaches; this advantage is explored much more in the next section. We also note that

this was obtained in a CV agnostic manner.

We can also perform the calculations with larger 𝛾quench by a factor of 10, yielding slightly

worse but comparable results. Fig. 2.13, showing that the important regions of the landscape

can be captured efficiently in tens of nanoseconds, which is similar to the convergence speed

of WT-MetaD [35] (see also next section). We can moreover perform this calculation with a 10

or 100 times slower quench, resulting in much more accurate results, but with a relatively small

improvement compared to the amount of additional sampling (Fig. 2.14, 2.15). Next, we show that

if we wish to resolve the high free energy regions in detail, it is possible to combine quenching

and CV based approaches.
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2.5.3 Combining qenching and umbrella sampling

Because quenching does a good job capturing the low free energy regions, we predicted that it

could be combined with US to produce an efficient sampling approach. By nature of introducing

a harmonic potential, we obtain by construction a more convex landscape, albeit one that can

still be hard to sample due to slow orthogonal degrees of freedom. To directly compute the FES

from our quench data, we also derived a modified version of the WHAM equations following the

derivation of Ref. [50] (See Appendix 2.8.4). Surprisingly, it turns out that we can use exactly the

same WHAM equations when 𝛽 = 𝛽0 by realizing that Jacobian 𝐽 (𝑡) is same among umbrella

windows and the ratio of any two umbrella windows are fixed over time. When we do not start

from the target temperature, we can estimate the biased densities in from each window and

combine them with the usual WHAM equations [85]. In Sec. 2.8.10 we also show that we can

apply the Eigenvector Method for Umbrella Sampling [46] (EMUS) with our quench data. EMUS

is a meshless estimator like MBAR and other post-WHAM approaches [45, 46, 86]. In other

words, it uses the true bias potentials instead of approximate ones to estimate the weight of a

sample generated in one umbrella versus that in another. EMUS is more expensive to apply than

WHAM and we did not find the results to be significantly different, hence we demonstrate that

it works in the Supporting Information but include results from WHAM in the main text.

We first tested combining these methods by taking starting points generated by the equilib-

rium US procedure at 𝑇 = 300 K, and quench in the presence of the same harmonic bias with

𝛾quench = 0.001 for a forward time of 1𝛾−1 and a reverse time of 1𝛾−1, with the idea that we can

use our estimator to compute unbiased weighted histograms in each position and then combine

the results with any standard free energy approach. We note that this quench time can be thought

of as approximately increasing and decreasing the temperature by a factor of 𝑒 , giving access to

temperatures between approximately 110 and 815 K. For each window, we select an upper and

lower bound to fix 𝜏+𝑖 and 𝜏−𝑖 as in the previous section.
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Figure 2.4: A comparison of FES between US and “quench" combined with US. (a) FES computed from
US at 𝑇 = 300 K with 400 ns total sampling time after start point generation. (b) FES computed from
by quench + US sampling with 400 ns total sampling time including start point generation. Data used in
computing Eq. 2.17 totals ≈ 287.6 ns. (c) Comparison of FES values on a bin-by-bin basis. The quench+US
landscape agrees almost exactly with the US one.

Fig. 2.4 shows the comparison of FES between US and quench+US. The resulting FES is almost

identical between our reference result and our newly computed surface up to the maximum range

accessed from US. We also show that this is the case when the quench FES is computed using

EMUS, when comparing to a reference FES computed by EMUS or by WHAM in Fig. 2.16 and

2.17, respectively.

Although so far we have reported results for a total equivalent amount of sampling time of

400 ns (with 287.6 ns being used in the estimator), the results of quench+US can be obtained much

more quickly than that. In Fig. 2.5 we show that the full FES converges much more quickly than

that. In Fig. 2.5(b) we highlight the case of 60 ns (43.2 ns used for the estimator) at which point

there is virtually no error and only some very high energy regions are not fully sampled. Fig. 2.5(c)

shows that the error is already minimal by ∼ 10 ns and stops decreasing by ∼ 200 ns. Although

the deviation between US and quench+US does not converge to zero, we also show in this plot that

this difference is much smaller than that obtained when using a different method (WT-MetaD)

or even a different method of estimating the FES from the same reference data (EMUS, open red

circles). Thus we do not consider an error of 0.1 kcal/mol over the entire surface to be significant.
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Figure 2.5: (a) Reference US FES with 800 ns of simulation. (b) FES computed from quench + US using
50 quenches per window corresponding to 60 ns of total simulation data, with ∼ 41 ns used to compute
Eq. 2.17. (c) RMSD of free energy for bins with FE ≤ 20 𝑘𝐵𝑇 (in kcal/mol) compared to reference umbrella
sampling as a function of total sampling time, which is adjusted by changing the number of starting
points used. Black dashed line shows comparison with WT-MetaD using bias factor 6 (see Fig. 2.18), and
open red circles show error when computing FES on reference data using EMUS rather than WHAM (see
Fig. 2.17). (d) Comparison of FES values in (a) and (b) on a bin-by-bin basis.

Next, we show that quenching helps USwhen using a bad CV. This is demonstrated by consid-

ering the case of US only along𝜓 , which does not distinguish the positive and negative 𝜙 basins

well. Two sets of simulations using the same US parameters were run, biasing at 20 windows

Ψ using the same spring constant of 24.0 kcal/
(
mol · rad2) . The reference US simulation used 2

ns per window, resulting in 40 total ns of simulation. For quenching, we use 666 starting points

separated by 1 ps in each window, with 𝛾quench = 0.001 for 𝛾𝜏+ = 1, 𝛾𝜏− = −1 corresponding to an
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equivalent amount of simulation time and 28.5 ns used in the estimator. The FES computed from

US and WHAM (Fig. 2.6 a) shows that little sampling is achieved. When adding quenching, the

heating phase allows the system to overcome some hidden energy barriers that are not captured

by bad CV Ψ, resulting in a surface which captures all minima relatively well but does not resolve

the barrier between the basins correctly.
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Figure 2.6: FES computed using only one bad CV. (a) FES computed from US on Ψ with 40 ns total sam-
pling. (b) FES computed from quench+US from 𝑇0 = 1200 on Ψ with approximately 40 ns total sampling
(28.5 ns used in computing Eq. 2.17), showing much more exploration.

Last, we again emphasize that quenching in principle allows estimating FES at various target

temperatures using the same simulation data. To quantify this, we tested whether we could ob-
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tain the FES at a range of temperatures, quenching from above, below, and in the middle. Using

starting points drawn from 𝑇0 = 75, 300, and 1200 K, and three quench simulations, we demon-

strate that the FES can be obtained for a wide range of temperatures above and below 300 K. In

Fig. 2.7 we show the bin-by-bin comparison with US for target temperatures𝑇 = 200, 300, and 400

K. In all but one case, the results are quite robust across the whole FES. In contrast, US reweighted

to other temperatures using the WHAM equations performs poorly in all six cases tested despite

using twice the amount of total sampling data. The one case shown where quench+US fails is

sampling initial points from 𝑇0 = 300 K and estimating at 𝑇 = 200 K, which may be due to insuf-

ficient sampling in the chosen initial points at 𝑇0 = 300 K that was not evident when estimating

at higher temperatures.
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Figure 2.7: Comparison of the quality of FES computed by sampling at 𝑇0 and estimating at 𝑇 . In each
case, the 𝑥-axis shows the FES computed by 800 ns of US at a reference temperature of either 𝑇 = 200,
300, or 400 K. The 𝑦-axis shows the FES computed at 𝑇 when starting at a low, medium, or high 𝑇0. For
US (red circles), these are𝑇0 =200, 300, 400 K and for quench+US (blue circles) these are 75, 300, and 1200
K. US alone fails at extrapolating even by 100 K (33%) while quench+US is much more robust. For US,
total simulation time is 800 ns and for quench+US, 𝛾quench = 0.001 and total sampling time is 800 ns (see
Tab. 2.1). To be consistent, the FES for quench+US is computed in all cases by estimating the unbiased
density in each case and combining by WHAM, even though we could use our exact WHAM equation for
the 𝑇 = 𝑇0 = 300 case.

45



2.6 Preliminary extension to solvated systems

Most MD simulations are run in solution which adds thousands of additional DOF from sol-

vent molecules. We were concerned that quenching could present difficulties in this case both (a)

due to numerical issues arising from the extensivity of the terms in the exponential within our FES

estimation formula, and (b) due to the problem of super-heating the solution. To mitigate these

issues, we propose a “solute-quench” approach (s-quench) in the spirit of solute tempering [42].

Here we investigate a scheme where the solvent degrees of freedom are evolved by Newtonian

dynamics and the solute degrees of freedom follow quench dynamics. Mathematically, this is

expressed as, 

¤Qsolute = M−1
solutePsolute

¤Psolute = −∇solute𝑈 (Qall) − 𝛾Psolute

¤Qsolvent = M−1
solventPsolvent

¤Psolvent = −∇solvent𝑈 (Qall)

(2.25)

For these equations, the Jacobian is still trivial to derive,

𝐽 (𝑡) = exp (−𝑑solute𝛾𝑡) (2.26)

It is possible to implement this algorithm in LAMMPS with same “fix” by simply choosing

two groups of atoms to integrate separately by two different integrators. We tested s-quench on

alanine dipeptide in water. Using CHARMM-GUI [87–89] we generated a LAMMPS input file

for alanine in a box of dimension 28Å per side with 752 water molecules. As in vacuum, the

system is equilibrated for 200 ps in each window, and then the rest of the US protocol is the same.

Here, the forcefield used is CHARMM36m. We show in Fig. 2.8 that this approach works and

s-quench+US gives identical results to standard US in this case. Interestingly, due to the small

size of the solute relative to the solvent, energy fluctuations make the histograms of minimum
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and maximum energy overlap. Hence for this case we rely on the infinite time approximation of

Eq. 2.18.
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Figure 2.8: A comparison of FES of alanine dipeptide in water between US and solute quench+US. (a)
FES computed from umbrella sampling at 𝑇 =300 K using 800 ns of total data. (b) FES computed from
s-quench+US with 𝑇0 = 300 K using 400 ns of total data. (c) Bin-by-bin comparison of FES between these
two cases shows exact agreement.

2.7 Conclusions

In the system of independent harmonic springs, a nearly exponential decay of the mean total

energy and the mean kinetic energy has been observed in the limit of small 𝛾𝑞𝑢𝑒𝑛𝑐ℎ . With this

observation, we can use 𝐸 (𝑡) = 𝐸 (0) 𝑒−𝛾𝑡 to predict the results of Eqn. 2.10 or Eqn. 2.14. We

found that these results give a good heuristic for how long to run quench simulations in practice.

Quenching alone gave moderate performance for alanine in vacuum if the desired quantity is

a fast estimation of the entire FES at a single temperature, and would not be the method of choice

at least for this simple problem where e.g. metadynamics is extremely efficient as demonstrated

in many papers. On the other hand, quenching does give access to the FES at a range of temper-

atures in a single shot, and so it may be efficient in cases where that is desired. Moreover, we

demonstrated that quench combined with US is accurate and efficient across a range of tempera-

tures. Quench+US can also alleviate issues in US due to hidden slow unbiased CVs, since reverse
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quenching heats up the system and high free energy regions are more likely to be sampled.

Here, we demonstrated that the WHAM equations also apply to this method when starting

temperature𝑇0 is equal to target temperature𝑇 , and showed that it is possible to estimate the FES

at other temperatures using a density-based WHAM approach. It is known that WHAM is not

the most optimal method of reweighting data, and other approaches could be used to combine

quench+US data; e.g. we tried combining US + quench data using EMUS [46], but this was more

computationally demanding and resulted in larger errors due to numerics.

Furthermore, we proposed a solute tempering version of quenching so that it can be applied

to solution systems where there are many DOF due to the presence of solvent molecules. We

showed that a perfect FES can also be obtained by combining this approach with US. As with

solute tempering, the major advantage of estimating the FES at other values of 𝑇 is no longer

applicable, and so it remains to be tested whether this approach is more efficient than the equi-

librium approach of US combined with solute tempering for a more difficult system.

Given our results, we feel that estimators based on nonequilibrium trajectories can offer an

alternative approach worth considering. These approaches may prove to be well suited to cer-

tain classes of problems that we have not yet tested, such as computing basin volumes or phase

equilibria of simple systems, and we plan to do so going forward.

48



2.8 Supplementary data

2.8.1 Derivation of the Jacobian 𝐽 (𝑡)

The Jacobian 𝐽 (𝑡) can be understood as a time-dependent factor that describes how phase

space volume changes over time because of the non-equilibrium process. We can compute the

change in phase space volume analogous to how it is done for the derivation of Liouville’s the-

orem [19]. First, let us consider an infinitesimal phase space volume at time 𝑡 , defined by 𝑑 + 1

arbitrarily closely spaced points X (𝑡) = (𝑋1, ..., 𝑋𝑑) ,
{
X′𝑖 (𝑡) = X (𝑡) + 𝛿X𝑖 (𝑡)

}
𝑖=1,...,𝑑 . An in-

finitesimal phase space volume at time 𝑡 is defined as follows,

𝛿𝑉 (𝑡) = det (𝛿X1 (𝑡) , ..., 𝛿X𝑑 (𝑡)),

where 𝛿X𝑖 (𝑡) = X′𝑖 (𝑡) −X (𝑡).

After infinitesimal time 𝛿𝑡 ,

X𝑖 (𝑡 + 𝛿𝑡) = X𝑖 (𝑡) + b (X (𝑡)) 𝛿𝑡 +𝒪
(
𝛿𝑡2)

X′𝑖 (𝑡 + 𝛿𝑡) = X′𝑖 (𝑡) + b
(
X′𝑖 (𝑡)

)
𝛿𝑡 +𝒪

(
𝛿𝑡2)

= X𝑖 (𝑡) + 𝛿X𝑖 (𝑡) +
[
b (X (𝑡)) +∇b (X (𝑡)) · 𝛿X𝑖 (𝑡) +𝒪

(
|𝛿X𝑖 |2 (𝑡)

) ]
𝛿𝑡 +𝒪

(
𝛿𝑡2)

𝛿X𝑖 (𝑡 + 𝛿𝑡) = X′𝑖 (𝑡 + 𝛿𝑡) −X𝑖 (𝑡 + 𝛿𝑡)

≈ 𝛿X𝑖 (𝑡) + [∇b (X (𝑡)) · 𝛿X𝑖 (𝑡)] 𝛿𝑡 +𝒪
(
𝛿𝑡2)

= (I + 𝛿𝑡∇b (X (𝑡))) · 𝛿X𝑖 (𝑡) +𝒪
(
𝛿𝑡2)

I + 𝛿𝑡∇b (X (𝑡)) =
©­­­­­«
1 + 𝛿𝑡 𝜕𝑏1 (X (𝑡))

𝜕𝑋1
· · · 𝛿𝑡

𝜕𝑏1 (X (𝑡))
𝜕𝑋𝑑

...
. . .

...

𝛿𝑡
𝜕𝑏𝑑 (X (𝑡))

𝜕𝑋1
· · · 1 + 𝛿𝑡 𝜕𝑏𝑑 (X (𝑡))

𝜕𝑋𝑑

ª®®®®®¬
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𝛿𝑉 (𝑡 + 𝛿𝑡) = det (𝛿X1 (𝑡 + 𝛿𝑡) , ..., 𝛿X𝑑 (𝑡 + 𝛿𝑡))

≈ det ((I + 𝛿𝑡∇b (X (𝑡))) · (𝛿X1 (𝑡) , . . . , 𝛿X𝑑 (𝑡)))

= det (I + 𝛿𝑡∇b (X (𝑡))) · det (𝛿X1 (𝑡) , . . . , 𝛿X𝑑 (𝑡))

=
(
1 + 𝛿𝑡∇ · b (X (𝑡)) +𝒪

(
𝛿𝑡2) ) 𝛿𝑉 (𝑡)

The last equation gives at lowest order,

1
𝛿𝑉 (𝑡)

𝑑

𝑑𝑡
𝛿𝑉 (𝑡) = ∇ · b (X (𝑡))

and by integrating this equation gives

𝛿𝑉 (𝑡) = 𝛿𝑉 (0) × exp
(∫ 𝑡

0
∇ · b (X (𝑠)) 𝑑𝑠

)
= 𝛿𝑉 (0) × 𝐽 (𝑡)

2.8.2 Time evolution of qench eqations of motion

Since the functional form of quench is similar to Langevin Dynamics, we use the so-called

BAOAB scheme [75] to get an accurate numerical update of coordinates and momenta. We split

quench equation of motion into three parts.

• (B) is ¤P (𝑡) = −∇𝑈 (Q (𝑡))

• (A) is ¤Q (𝑡) = M−1P (𝑡)

• (O) is ¤P (𝑡) = −𝛾P (𝑡)

By iterating these parts in the order BAOA for discrete time steps proportional to 𝛿𝑡 , time

is advanced. We can solve the (O) step analytically to advance time more accurately, while the
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other two steps are advanced to first order in 𝛿𝑡 . This results in a scheme:



(B) : P ← P −∇𝑈 (Q) · 𝛿𝑡

(A) : Q← Q +M−1P · 𝛿𝑡
2

(O) : P ← exp (−𝛾𝛿𝑡)P

(A) : Q← Q +M−1P · 𝛿𝑡
2

This is implemented in a LAMMPS ‘fix’ quench_exponential, implemented by the code

“fix_quench_exponential.cpp” and “fix_quench_exponential.h” available in the github repository

for this chapter.

2.8.3 Numerical error in free energy calculation

We compute free energy surfaces on a discrete grid, resulting in a discretization error. First,

let us consider free energy along 1D CV 𝑠 ∈ R, but this can be generalized to higher dimensional

CVs in a similar manner. We assume the true free energy 𝐹 (𝑠) is differentiable.

𝐹 (𝑠) = − 1
𝛽

ln

(∫
R2𝑑 𝛿 (𝑆 (x) − 𝑠) exp (−𝛽ℋ (x)) 𝑑x∫

R2𝑑 exp (−𝛽ℋ (x)) 𝑑x

)
(2.27)

In practice, this delta function is replaced by a window function which is 1 within a range of

s and zero outside.

Suppose 𝐹 (𝑠0) is the average free energy we should get at the specific site 𝑠0 over an interval
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with length Δ𝑠 .

𝐹 (𝑠0) Δ𝑠 =
∫ 𝑠0+Δ𝑠/2

𝑠0−Δ𝑠/2
𝐹 (𝑠) 𝑑𝑠

=

∫ Δ𝑠/2

−Δ𝑠/2
𝐹 (𝑠0 + 𝑠) 𝑑𝑠

=

∫ Δ𝑠/2

−Δ𝑠/2
𝐹 (𝑠0) + 𝐹 ′ (𝑠0) 𝑠 +

1
2
𝐹 ′′ (𝑠0) 𝑠2 +𝒪

(
𝑠3) 𝑑𝑠

= 𝐹 (𝑠0) Δ𝑠 +
1
24
𝐹 ′′ (𝑠0) Δ𝑠3 +𝒪

(
Δ𝑠5)

(2.28)

To apply this averaging idea, we can apply it to the probability distribution rather than the

free energy itself, resulting in:

exp
(
−𝛽𝐹 (𝑠0)

)
Δ𝑠 =

∫ 𝑠0+Δ𝑠/2

𝑠0−Δ𝑠/2
exp (−𝛽𝐹 (𝑠)) 𝑑𝑠

=

∫ Δ𝑠/2

−Δ𝑠/2
exp (−𝛽𝐹 (𝑠0 + 𝑠)) 𝑑𝑠

=

∫ Δ𝑠/2

−Δ𝑠/2
exp

(
−𝛽

[
𝐹 (𝑠0) + 𝐹 ′ (𝑠0) 𝑠 +

1
2
𝐹 ′′ (𝑠0) 𝑠2 +𝒪

(
𝑠3) ] ) 𝑑𝑠

≈ exp (−𝛽𝐹 (𝑠0))
∫ Δ𝑠/2

−Δ𝑠/2
1 − 𝛽𝐹 ′ (𝑠0) 𝑠 +

1
2

(
𝛽2𝐹 ′2 (𝑠0) − 𝛽𝐹 ′′ (𝑠0)

)
𝑠2 +𝒪

(
𝑠3) 𝑑𝑠

= exp (−𝛽𝐹 (𝑠0))
[
Δ𝑠 + 1

24

(
𝛽2𝐹 ′2 (𝑠0) − 𝛽𝐹 ′′ (𝑠0)

)
Δ𝑠3 +𝒪

(
Δ𝑠5) ]

(2.29)

From Eq. 2.28 and Eq. 2.29, we find that the true free energy, the mean free energy over an

interval, and the free energy computed from the block functions are approximately equal within

first order accuracy and the error has a magnitude of 𝒪
(
Δ𝑠2) .

2.8.4 Derivation of WHAM eqations

WHAM [44] (Weighted Histogram Analysis Method) is a widely-used technique to reweight

data from different windows in umbrella sampling simulations. However, WHAM is valid only
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for an equilibrium process, so here we derive a nonequilibrium version of WHAM that applies in

this case. We follow the derivation in Ref. [50], and modify some parts to match the “quenching”

case.

In the case of regular umbrella sampling simulations, let 𝜌◦
𝑘𝑙
be the unbiased probability den-

sity at window (𝜙𝑘 ,𝜓𝑙 ) which we wish to determine. To compute this, we apply bias potentials

𝜔𝑖 𝑗,𝑘𝑙 at a window (𝜙𝑘 ,𝜓𝑙 ) with an additional harmonic potential centered at site
(
𝜙𝑖,𝜓 𝑗

)
defined

by:

𝜔𝑖 𝑗,𝑘𝑙 =
1
2
𝜅

[
(𝜙𝑖 − 𝜙𝑘)2 +

(
𝜓 𝑗 −𝜓𝑙

)2
]

(2.30)

Note that because the bias is applied to dihedral angles, dihedral differences are computed

taking into account periodicity of 2𝜋 radians. Under the influence of this potential, we measure

𝑛𝑖 𝑗,𝑘𝑙 the ‘counts’ (number of sampled data points) in the window centered at (𝜙𝑘 ,𝜓𝑙 ).

Since the ratio of probability densities between two windows is fixed, the overall probability

density 𝜌𝑖 𝑗,𝑘𝑙 at window (𝜙𝑘 ,𝜓𝑙 ) with biased potential at site
(
𝜙𝑖,𝜓 𝑗

)
is the linear combination of

biased probability densities:

𝜌𝑖 𝑗,𝑘𝑙 = 𝑐𝑖 𝑗𝜌
◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
, (2.31)

where 𝑐𝑖 𝑗 is the normalization factor at 𝑡 = 0:

𝑐−1
𝑖 𝑗 =

∑︁
𝑘,𝑙

𝜌◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
(2.32)

The overall probability of getting the sampled data is proportional to the product of these

biased probability densities:

P ∝
∏
𝑖, 𝑗

∏
𝑘,𝑙

(
𝜌𝑖 𝑗,𝑘𝑙

)𝑛𝑖 𝑗,𝑘𝑙
=

∏
𝑖, 𝑗

∏
𝑘,𝑙

(
𝑐𝑖 𝑗𝜌

◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

) )𝑛𝑖 𝑗,𝑘𝑙 (2.33)
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We can estimate the true probability density by maximizing the log-likelihood,

𝜕 lnP
𝜕𝜌◦

𝑘𝑙

=
∑︁
𝑖, 𝑗

𝑛𝑖 𝑗,𝑘𝑙
1
𝜌◦
𝑘𝑙

+
∑︁
𝑖, 𝑗

∑︁
𝑘,𝑙

𝑛𝑖 𝑗,𝑘𝑙
1
𝑐𝑖 𝑗

𝜕𝑐𝑖 𝑗

𝜕𝜌◦
𝑘𝑙

=
∑︁
𝑖, 𝑗

𝑛𝑖 𝑗,𝑘𝑙
1
𝜌◦
𝑘𝑙

−
∑︁
𝑖, 𝑗

(∑︁
𝑘,𝑙

𝑛𝑖 𝑗,𝑘𝑙

)
𝑐𝑖 𝑗 exp

(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
= 0

(2.34)

Summarizing this equation and normalization condition gives WHAM equations for regular

umbrella sampling simulations:


𝜌◦
𝑘𝑙
=

∑
𝑖, 𝑗 𝑛𝑖 𝑗,𝑘𝑙∑

𝑖, 𝑗

(∑
𝑘,𝑙 𝑛𝑖 𝑗,𝑘𝑙

)
𝑐𝑖 𝑗 exp

(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
𝑐−1
𝑖 𝑗 =

∑︁
𝑘,𝑙

𝜌◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

) (2.35)

Similarly, in quenching, let 𝜌𝑖 𝑗,𝑘𝑙,𝑡 be probability density at window (𝜙𝑘 ,𝜓𝑙 ) and at time 𝑡 with

biased potential centered at
(
𝜙𝑖𝜓 𝑗

)
:

𝜌𝑖 𝑗,𝑘𝑙,𝑡 = 𝑐𝑖 𝑗𝜌
◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
exp (−𝑑𝛾𝑡), (2.36)

where 𝑐𝑖 𝑗 is the normalization factor:

𝑐−1
𝑖 𝑗 =

∑︁
𝑘,𝑙

𝜌◦
𝑘𝑙

exp
(
−𝛽0𝜔𝑖 𝑗,𝑘𝑙

)
(2.37)

We eventually get exactly the same equation as Eq. 2.35 except for the expression of 𝑛𝑖 𝑗,𝑘𝑙 :

𝑛𝑖 𝑗,𝑘𝑙 =
∑︁
𝑡

𝑛𝑖 𝑗,𝑘𝑙,𝑡 (2.38)

Note that 𝜌◦
𝑘𝑙
is unbiased probability density at starting temperature 𝛽0. If we would like to
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estimate the unbiased probability 𝜌◦
𝑘𝑙
at the target temperature 𝛽 while the simulations are run

at a different starting temperature 𝛽0, then there are two ways to compute 𝑛𝑖 𝑗,𝑘𝑙 .

In the first approach, we can estimate the density of states 𝑛 (𝜙𝑘 ,𝜓𝑙 , 𝐸) instead with the fol-

lowing relations:

exp (−𝛽𝐹 (𝜙𝑘 ,𝜓𝑙 )) ≈
∑︁
𝐸

𝑛 (𝜙𝑘 ,𝜓𝑙 , 𝐸) exp (−𝛽𝐸)Δ𝐸

≈
∑︁
𝐸

𝑛 (𝜙𝑘 ,𝜓𝑙 , 𝐸) exp (−𝛽𝐸)𝐸Δ ln𝐸
(2.39)

Here the conversion to use Δ ln (𝐸) is shown because, in practice, the exponential decay/increase

in energy from quench dynamics leads to a very wide range of energy values, and hence it is

more computationally convenient to histogram the log of the energy.


𝑛 (𝜙𝑘 ,𝜓𝑙 , 𝐸) =

∑
𝑖, 𝑗 𝑛𝑖 𝑗,𝑘𝑙,𝐸∑

𝑖, 𝑗

(∑
𝑘,𝑙,𝐸 𝑛𝑖 𝑗,𝑘𝑙,𝐸

)
𝑐𝑖 𝑗 exp

(
−𝛽0

(
𝐸 + 𝜔𝑖 𝑗,𝑘𝑙

) )
𝑐−1
𝑖 𝑗 =

∑︁
𝑘,𝑙,𝐸

𝑛 (𝜙𝑘 ,𝜓𝑙 , 𝐸) exp
(
−𝛽0

(
𝐸 + 𝜔𝑖 𝑗,𝑘𝑙

) ) (2.40)

In the second, we compute “effective counts”. We use Eq. 2.17 to estimate the biased proba-

bility 𝜌𝑖 𝑗,𝑘𝑙 , which is normalized counts 𝑛𝑖 𝑗,𝑘𝑙 up to a constant. We can feed these effective counts

to the WHAM equations (Eq. 2.35) to estimate 𝜌𝑖 𝑗,𝑘𝑙 .

Although the first way is mathematically more rigorous, the second method is more conve-

nient and cheaper to implement, and hence we did not use the first approach in this chapter.

2.8.5 Amount of simulation time used in each example

A table listing the amount of effort used for each simulation is given in Tab. 2.1.
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Table 2.1: Table of computational cost for original data of each example given in the main text.

System Figure Method Cost/start Starts Windows
Harmonic 1,2 Quench 10 + 2/𝛾quench 2000 -

Ala 3a,4a,7 2dUS 1 ns 1 400
Ala 3b Quench 1+4𝛾−1 =41 ps 104 -
Ala 4b Quench+2dUS 3 ps 300 400
Ala 5a,5c 2dUS 2 ns 1 400
Ala 5b Quench+2dUS 3 ps 50 400
Ala 6a 1dUS 2 ns 1 20
Ala 6b Quench+1dUS 3 ps 666 20
Ala 7 Quench+2dUS

𝑇0 = 300 3 ps 666 400
𝑇0 = 75 4 ps 500 400
𝑇0 = 1200 4 ps 500 400

Ala+H2O 8a 2dUS 2 ns 1 400
Ala+H2O 8b S-Quench+2dUS 3 ps 333 400

2.8.6 Convergence of approximation in Eq. 2.18

Fig. 2.9 shows the convergence of the “infinite time” limit of our quench estimator is assessed

for a system of harmonic springs in Fig. 2.9 as described in the main text. We also assess the

accuracy considering a range of starting temperatures and target temperatures, simulating for a

range of times. To make the comparisons fair, we adjust the forward and backward time auto-

matically by taking 𝛾𝜏+ = 𝛾𝜏+0 + ln (𝑇0/𝑇 ) and 𝛾𝜏− = 𝛾𝜏−0 + ln (𝑇0/𝑇 ) so that total simulation time is

fixed and the overall temperature range is similar. We show in Fig. 2.10 that accurate results are

obtained once total simulation time exceeds our heuristic value of 𝛾quench (𝜏+ − 𝜏−) = 𝛾quench𝜏 =

2| ln (𝑇0/𝑇 ) |.

56



0.0 0.5 1.0 1.5 2.0
quench  ( = + + )

0.1

0.0

0.1

0.2

1 3N
ln

(Q
(T

)/Q
(T

0)
)

ln
(T

/T
0) quench=2.00

quench=1.00
quench=0.10
quench=0.01

Figure 2.9: Error in the log of the ratio of partition functions at two different temperatures as a function of
total quenching time for𝒩 = 1000 3Dharmonic oscillators. Quench is performed from 2000 initial samples
obtained at 𝑇0 = 2.0, estimating the partition function at 𝑇 = 1. For small 𝛾𝑞𝑢𝑒𝑛𝑐ℎ , the partition function
converges exactly to the theoretical value (horizontal dashed line shows zero error) at𝛾quench𝜏 = 2 ln (𝑇 /𝑇0)
(vertical dashed line). When the quench is heavily damped, the ratio does not converge to the correct
value.

Figure 2.10: Absolute relative error of the log of the ratio of the partition function at 𝑇 = 1 with vary-
ing 𝑇0, using 𝛾𝑞𝑢𝑒𝑛𝑐ℎ = 0.01. As 𝑇0 goes away from 1, more sampling time 𝛾quench𝜏 is required. To-
tal simulation time 𝛾quench𝜏 indicates quenching forward for 𝛾quench𝜏/2 + ln (𝑇0/𝑇 ) and backwards for
−𝛾quench𝜏/2 + ln (𝑇0/𝑇 ). Dashed line shows the shape of 2 ln (𝛽/𝛽0), which is the time of convergence
shown in Fig. 2.9 .
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2.8.7 Comparison of accuracy of the estimator in Eq. 2.13 with the

infinite time approximation and Cao and Vanden-Eijnden

variants for harmonic springs

In Fig. 2.11 we compare the accuracy of estimating the ratio of partition functions for 𝑁 =

1000 harmonic springs with quench in two ways, (1) the infinite time limit using fixed total

sampling time 𝜏+ = 2𝛾−1, 𝜏− = −2𝛾−1 and (2) the finite time version of Eq. 2.19 from Ref. [65] for

many different combinations of 𝜏+ and 𝜏−. The infinite limit gives equivalent accuracy, while the

estimator from Ref. [65] can give higher accuracy results for specially chosen quench times, but

is less accurate for typical choices, using total simulation time 4 𝛾−1.
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Figure 2.11: Absolute relative error of the log of the partition function ratio for 𝑁 = 1000 and 𝛾 = 0.01 as
in Fig. 2.2

2.8.8 Energy cutoffs for alanine qench

Fig. 2.12 shows the energies sampled from quench dynamics for ADP.
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Figure 2.12: Energy histograms for fixed length forward and reverse quenches for alanine dipeptide. The
minimum of the upper energies and the maximum of the lower energies were used as cutoffs for Fig. 2.3.
Here we started with 𝑇0 = 1200 K using 𝛾quench = 1 × 10−4 and 104 starting points corresponding to ≈ 251
ns of total simulation time. We chose 𝑇min = 200 K as a target lower quench temperature such that,
𝛾𝜏+ = ln (1200/200) = ln (6) ≈ 1.8, and 𝛾𝜏− = −2 + ln (1200/300) = −2 + ln (4) ≈ −0.6.

2.8.9 Quench alone at different rates for alanine dipeptide
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Figure 2.13: This shows the same procedure as in Fig. 2.3, but with 𝛾quench = 0.001 (10 times faster). Here,
the total amount of sampling time in US is 400 ns and in quench is ≈ 50 ns. Data used in computing
Eq. 2.17 including generating restart points totals ≈ 33.5 ns.
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Figure 2.14: This shows the same procedure as in Fig. 2.3, but with 𝛾quench = 1 × 10−5 (10 times slower).
Here, the total amount of sampling time inUS is 400 ns and in quench is≈ 4010 ns. Data used in computing
Eq. 2.17 including generating restart points totals ≈ 2529 ns.
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Figure 2.15: This shows the same procedure as in Fig. 2.3, but with 𝛾quench = 1 × 10−6 (100 times slower).
Here, the total amount of sampling time in US is 400 ns and in quench is ≈ 40010 ns. Data used in
computing Eq. 2.17 including generating restart points totals ≈ 23997 ns.

2.8.10 Evaluation of FES computed byQuench using EMUS instead of

WHAM for alanine dipeptide

Here we show how EMUS [46] works in a normal umbrella sampling simulation and then

derive a “quench” version of EMUS using Eq. 2.10. In the EMUS algorithm, we first estimate three
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quantities by sample means:



〈
𝜙∑
𝑘 𝜓𝑘

〉
𝑖

≡ ⟨𝜙∗⟩𝑖 ≈
1
𝑁𝑖

𝑁𝑖−1∑︁
𝑡=0

𝜙 (X𝑖 (𝑡))∑
𝑘 𝜓𝑘 (X𝑖 (𝑡))〈

1∑
𝑘 𝜓𝑘

〉
𝑖

≡ ⟨1∗⟩𝑖 ≈
1
𝑁𝑖

𝑁𝑖−1∑︁
𝑡=0

1∑
𝑘 𝜓𝑘 (X𝑖 (𝑡))

𝐹𝑖 𝑗 = ⟨𝐹 𝑗 ⟩𝑖 ≈
1
𝑁𝑖

𝑁𝑖−1∑︁
𝑡=0

𝜓 𝑗 (X𝑖 (𝑡))∑
𝑘 𝜓𝑘 (X𝑖 (𝑡))

, (2.41)

where 𝜙 is an observable of interest, 𝜓𝑘 (X𝑖 (𝑡)) = 1
2𝜅 (𝑆 (X𝑖 (𝑡)) − 𝑠𝑘)2 is the exact biased po-

tential given sample dataX𝑖 (𝑡) from the 𝑖th biased simulation as if it were sampled from the 𝑘th

biased simulation. F is the overlap matrix and 𝐹𝑖 𝑗 is the element of F in 𝑖th row and 𝑗th column.

With these definitions, we can compute expectations of 𝜙 by the following expression:

⟨𝜙⟩ =
∑𝐿
𝑖=1 𝑧𝑖 ⟨𝜙∗⟩𝑖∑𝐿
𝑖=1 𝑧𝑖 ⟨1∗⟩𝑖

, (2.42)

where 𝑧𝑖 solves

𝑧 𝑗 =

𝐿∑︁
𝑖=1

𝑧𝑖𝐹𝑖 𝑗 . (2.43)

and 𝑧 is uniquely determined since
𝐿∑︁
𝑖=1

𝑧𝑖 = 1. (2.44)

In the case of “quench” and umbrella sampling simulation, we use Eq. 2.10 as a bridge to

connect an equilibrium average and the data sampled out of equilibrium. We first estimate three
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quantities as follows



⟨𝜙∗⟩𝑖 ≈
1
𝑁

𝑁∑︁
𝑘=1

∫
𝜙 (X𝑘 (𝑡))∑𝑁𝑤

𝑙=1 𝜓𝑙 (X𝑘 (𝑡))
𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡∫

𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡

⟨1∗⟩𝑖 ≈
1
𝑁

𝑁∑︁
𝑘=1

∫
1∑𝑁𝑤

𝑙=1 𝜓𝑙 (X𝑘 (𝑡))
𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡∫

𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡

⟨𝐹 𝑗 ⟩𝑖 ≈
1
𝑁

𝑁∑︁
𝑘=1

∫ 𝜓 𝑗 (X𝑘 (𝑡))∑𝑁𝑤
𝑙=1 𝜓𝑙 (X𝑘 (𝑡))

𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡∫
𝑒−𝛽0ℋ𝑖 (X𝑘 (𝑡))−𝑑𝛾𝑡 𝑑𝑡

, (2.45)

Here, the integrals are computed from 𝜏−
𝑘
to 𝜏+

𝑘
as in the main text.

After computing these quantities, we find the left eigenvector 𝑧𝑖 that satisfies Eq. 2.43 and

use Eq. 2.42 to estimate an arbitrary observable from our quench data. An FES is obtained if

we choose 𝜙 = 𝛿 (𝑆 (X) − 𝑠). Note that a numerical error is introduced since we have used

Eq. 2.10 as a bridge, although no numerical error is introduced when making grids as in the case

of WHAM. Below, we demonstrate that EMUS does work for the quench results, as compared

to an equilibrium EMUS calculation and as compared to WHAM. However, EMUS is much more

computationally expensive sowe have usedWHAM to reweight data from “quench” and umbrella

sampling simulations in practice.
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Figure 2.16: A comparison of FES between EMUS and “quench” version of EMUS. (a) FES computed
from US at 𝑇 = 300K with 800 ns total sampling time. (b) FES computed from “quench” version of EMUS
derived in Sec. 2.8.10 with 𝛾quench = 0.001 and 863.1 ns total simulation time.
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Figure 2.17: Same as Fig. 2.16, but comparing Quench+US/EMUS to the FES computed by WHAM as in
the main text.

2.8.11 Comparison of FES computed by US+WHAM with EMUS and

Metadynamics for alanine dipeptide
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Figure 2.18: Sames as Fig. 2.3, but panel (b) is computed with WT-MetaD with a bias factor of 6, as
described in the main text.
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Figure 2.19: Sames as Fig. 2.3, but panel (b) is computed with WT-MetaD with a bias factor of 10, as
described in the main text.

2 0 2
(rad)

2

0

2

(ra
d)

(a) US EMUS Reference

2 0 2
(rad)

2

0

2

(b) WT-MetaD, = 6

0 10 20
Ref US EMUS FE (kcal/mol)

0

5

10

15

20

25

W
T-

M
et

aD
 F

E 
(k

ca
l/m

ol
)

(c)

0

5

10

15

20

FE
 (k

ca
l/m

ol
)

Figure 2.20: Sames as Fig. 2.18, but panel (a) is computed EMUS rather than WHAM.
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3 | Optimal unbiased NEIS estimator

with given invertible dynamics

This chapter presents an extension to the theory reported in the previous chapter.

3.1 Abstract

An unbiased non-equilibrium importance sampling (NEIS) estimator within an upper bound-

ary and a lower boundary was introduced in the pioneering work from Rotskoff and Vanden-

Eijnden [60] and then this theory was further expanded upon by Cao and Vanden-Eijnden [65].

In their work, they categorized these unbiased NEIS estimators into two groups. One is infinite

time non-equilibrium importance sampling (ITNEIS) estimator where the NEIS estimator within

two boundaries can be considered as a special case of ITNEIS estimator and the other is finite time

non-equilibrium importance sampling (FTNEIS) estimator which is more feasible in real molecu-

lar simulations. In this chapter, we extend these ideas and generalize these NEIS estimators with

fixed invertible dynamics. Firstly, we show that these generalized NEIS estimators are unbiased.

Then we reveal the hidden nature of the unbiased property of NEIS estimators and derive the cor-

rect way to compute variance of NEIS estimators. Finally, we prove that there exists a universal

optimal unbiased NEIS estimator with given invertible dynamics.
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3.2 Introduction

Given a general invertible equation of motion defined on Γ as shown in Eq. 3.1, let X (𝑡,x)

denote the coordinate starting at x ∈ Γ and following the equation of motion after time 𝑡 . There

is a corresponding Jacobian defined as in Eq. 3.2 that represents how the volume of phase space

changes over time through the invertible equation of motion.

𝑑

𝑑𝑡
X (𝑡,x) = b (X (𝑡,x)) (3.1)

𝐽 (𝑡,x) = exp
(∫ 𝑡

0
∇ · b (X (𝑠,x)) 𝑑𝑠

)
(3.2)

There are several properties that are of critical importance.

1. X (𝑠,X (𝑡,x)) = X (𝑠 + 𝑡,x)

2. 𝐽 (𝑠,X (𝑡,x)) 𝐽 (𝑡,x) = 𝐽 (𝑠 + 𝑡,x)

3. x̃ ≡X (𝑡,x) ⇒ 𝑑x̃ = 𝐽 (𝑡,x) 𝑑x

The first property is the definition of invertible equation of motion. The second property

shows that the ratio of the final volume of phase space through an invertible equation of motion

starting at initial coordinate x after time 𝑠 +𝑡 to the initial volume of phase space is the product of

the ratio of the final volume of phase space starting at an intermediate coordinateX (𝑡,x) to the

intermediate volume of phase space and the ratio of the intermediate volume of phase space after

time 𝑡 to the initial volume of phase space. The third property shows how an infinitesimal volume

changes over time through an invertible equation of motion and tells us how to make a change

of variable from a mathematical perspective, which is of critical importance in mathematical

derivation and proof.
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From the work of Ref. [60], an unbiased ITNEIS estimator (Eq. 3.3) was proposed,

𝜙 ITNEIS
neq (x) ≡

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
(3.3)

Here, computing an observable follows initiate-then-propagate algorithm. First, several starting

points are drawn from starting density 𝜌0. Then for each starting point x, an invertible possibly

non-equilibrium equation of motion is performed both forward in time and backward in time and

a trajectory X (𝑡,x) is generated from a starting point x. Finally, for each starting point x, an

estimate is calculated by approximating Eq. 3.3 through an average over 𝑁 separate trajectories

generated from starting points {x𝑖}𝑁𝑖=1:

⟨𝜙⟩1 ≈
1
𝑁

𝑁∑︁
𝑖=1

∫ +∞
−∞ 𝜙 (X (𝑡,x𝑖)) 𝜌1 (X (𝑡,x𝑖)) 𝐽 (𝑡,x𝑖) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x𝑖)) 𝐽 (𝑠,x𝑖) 𝑑𝑠
. (3.4)

Note that the stage of generating trajectories and the stage of calculating estimates can both be

done in parallel and considerable time is saved thanks to high performance computers (HPC).

We can show that the estimator is unbiased at any target density 𝜌1 (Eq. 3.5),

〈
𝜙 ITNEIS
neq

〉
0 ≡

∫
Γ
𝜌0 (x) 𝜙neq (x) 𝑑x

=

∫
Γ
𝜌0 (x)

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝑑x

=

∫
Γ

∫ +∞

−∞

𝜌0 (X (−𝑡, x̃)) 𝜙 (x̃) 𝜌1 (x̃)∫ +∞
−∞ 𝜌0 (X (𝑠,X (−𝑡, x̃))) 𝐽 (𝑠,X (−𝑡, x̃)) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ +∞

−∞

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ +∞
−∞ 𝜌0 (X (𝑠 − 𝑡, x̃)) 𝐽 (𝑠 − 𝑡, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ +∞

−∞

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ +∞
−∞ 𝜌0 (X (−𝑠, x̃)) 𝐽 (−𝑠, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃) 𝑑x̃ ≡ ⟨𝜙⟩1

(3.5)
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By Jensen’s inequality [63], it has a smaller variance than the vanilla one when estimating an

observable 𝜙 at starting density 𝜌0. In our work (Ref. [66]) reported in the previous chapter, we

show how long one should extend simulations to achieve convergence of the ITNEIS estimator.

Since we are using finite-time simulations with an infinite time estimator, an error is inevitably

introduced and makes the estimator biased, although this numerical error is negligible.

In the work from Ref. [65], an unbiased FTNEIS estimator (Eq. 3.6) was proposed.

𝜙FTNEIS
neq ≡

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 (3.6)

Eq. 3.7 shows that the estimator is unbiased at any target density 𝜌1.

〈
𝜙FTNEIS
neq

〉
0 ≡

∫
Γ
𝜌0 (x)

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑡,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 𝑑x

=

∫
Γ

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝜙 (x̃) 𝜌1 (x̃)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,X (−𝑡, x̃))) 𝐽 (𝑠,X (−𝑡, x̃)) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠 − 𝑡, x̃)) 𝐽 (𝑠 − 𝑡, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ 𝜏+

𝜏−
𝜌0 (X (−𝑠, x̃)) 𝐽 (−𝑠, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃) 𝑑x̃ ≡ ⟨𝜙⟩1

(3.7)

An optimal flow bopt condition (Eq. 3.8) of ITNEIS estimator that has the smallest variance is

also derived and discussed in that work.

∫ +∞

−∞
𝜌0 (x) 𝐽 opt (𝑡,x) 𝑑x =

∫ +∞

−∞
𝜌1 (x) 𝐽 opt (𝑡,x) 𝑑x (3.8)

This optimal flow condition can be understood as the requirement of implementation of Jensen’s

inequality [63] when the target density 𝜌1 is different from starting density 𝜌0. Regarding FTNEIS
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estimators, if total simulation step is fixed (𝜏+−𝜏− = 𝜏 is a constant), and a simulation with a time

range [−2𝜏, 2𝜏] is required by definition, then for any 𝜏− ∈ [−𝜏, 0] and 𝜏+ = 𝜏− + 𝜏 , the FTNEIS

estimator is unbiased and there is no clear criterion to choose the optimal 𝜏−, 𝜏+. Moreover, the

functional form of the optimal flow condition is too complicated to be applicable with chosen

𝜏−, 𝜏+.

3.3 Generalized NEIS estimator

In practice, a specific equation of motion called “quench” (Eq. 3.9) is used. There are several

benefits of this equation of motion.


¤Q = M−1P

¤P = −∇𝑈 (Q) − 𝛾P
(3.9)

• It is dissipative. In other word, low-energy region is sampled by performing it forward in

time and high-energy region is sampled by performing it backward in time. High energy

barriers are partially overcome during backward simulations.

¤𝐸 = ∇𝑈 · ¤Q +M−1 · ¤P = −𝛾P · P ⩽ 0

• The functional form of the corresponding Jacobian is simple and it is independent from

starting point x. Here 𝑑 is the degree of freedom (DOF) of system.

𝐽 (𝑡,x) = exp (−𝑑𝛾𝑡)

Unlike in Ref. [65], we would like to find a way to optimize unbiased NEIS estimators with

given dissipative flow since dissipative flow has so many benefits. As discussed in our work
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(Ref. [66]) and the appendix of the previous chapter, there are several unbiased FTNEIS estimators

besides the unbiased ITNEIS estimator with given dynamics. For example, a FTNEIS estimator

defined in Eq. 3.10,

𝜙neq ≡
1

𝜏+ − 𝜏−
∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)
𝜌0 (x)

𝑑𝑡 (3.10)

is unbiased as shown in Eq. 3.11.

〈
𝜙neq

〉
0 ≡

∫
Γ
𝜌0 (x)

1
𝜏+ − 𝜏−

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)
𝜌0 (x)

𝑑𝑡 𝑑x

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ 𝜏+

𝜏−

1
𝜏+ − 𝜏− 𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃) 𝑑x̃ ≡ ⟨𝜙⟩1

(3.11)

Hence the following question arises naturally: Is there a generalized class of unbiased NEIS esti-

mators so that we can optimize them to get the optimal unbiased NEIS estimator with the smallest

variance?

A class of generalized NEIS estimators characterized by a virtual Jacobian 𝐽 satisfying the

property 𝐽 (𝑠,X (𝑡,x)) 𝐽 (𝑡,x) = 𝐽 (𝑠 + 𝑡,x) is defined by Eq. 3.12.

𝜙neq ≡
∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 (3.12)
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We can prove that this class of generalized NEIS estimators is unbiased (Eq. 3.13),

〈
𝜙neq

〉
0 ≡

∫
Γ
𝜌0 (x)

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑡,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡 𝑑x

=

∫
Γ

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝜙 (x̃) 𝜌1 (x̃)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,X (−𝑡, x̃))) 𝐽 (𝑠,X (−𝑡, x̃)) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠 − 𝑡, x̃)) 𝐽 (𝑠 − 𝑡, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃)

∫ 𝜏+

𝜏−

𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ 𝜏+

𝜏−
𝜌0 (X (−𝑠, x̃)) 𝐽 (−𝑠, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃) 𝜌1 (x̃) 𝑑x̃ ≡ ⟨𝜙⟩1

(3.13)

A 𝐽 satisfying such property can be defined by Eq. 3.14, where 𝑓 is an arbitrary scalar function.

𝐽 (𝑡,x) ≡ exp
(∫ 𝑡

0
𝑓 (X (𝑠,x)) 𝑑𝑠

)
(3.14)

3.4 Physical interpretation of 𝐽

To understand the physical interpretation of the virtual Jacobian 𝐽 , we derive the general NEIS

estimator in another way following the idea from the work [60]. In their work, an unbiased NEIS
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estimator is derived as follows,

⟨𝜙⟩ne ≡
∫
Γ
𝜙 (x) 𝜌ne (x) 𝑑x

∝
∫
Γ

∫ 𝜏+ (x)

𝜏− (x)
𝜙 (X (𝑡,x)) 𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ
𝜙 (x̃)

∫ −𝜏− (x̃)

−𝜏+ (x̃)
𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃) 𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃)

∫ 𝜏+ (x̃)

𝜏− (x̃)
𝜌0 (X (𝑡, x̃)) 𝐽 (𝑡, x̃) 𝑑𝑡 𝑑x̃

⇒ 𝜌ne (x) ∝
∫ 𝜏+ (x)

𝜏− (x)
𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

⟨𝜙⟩0 =
〈
𝜙𝜌0

𝜌ne

〉
ne

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x))∫ 𝜏+ (X (𝑡,x))
𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠, (X (𝑡,x)))) 𝐽 (𝑠, (X (𝑡,x))) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (X (𝑡,x))
𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠 + 𝑡,x)) 𝐽 (𝑠 + 𝑡,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

〈∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
0

In the first two lines of the proof, a non-equilibrium density 𝜌ne is expressed by both definition

and an average through trajectories starting from points generated by initial density. Each sample

point in each trajectory has the same weight 1. One can set 𝜙 ≡ 1 to get the normalization factor

of the non-equilibrium density 𝜌ne.

If we do not assume that all weights are 1s and give a path-dependent weight for each sample

point in each trajectory 𝐽 (𝑡,x)
𝐽 (𝑡,x) ≡ exp

(∫ 𝑡

0 ∇ · b (X (𝑠,x)) − 𝑓 (X (𝑠,x)) 𝑑𝑠
)
, then following the
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same idea, we can derive a general non-equilibrium density 𝜌ne as follows.

⟨𝜙⟩ne ≡
∫
Γ
𝜙 (x) 𝜌ne (x) 𝑑x

∝
∫
Γ

∫ 𝜏+ (x)

𝜏− (x)
𝜙 (X (𝑡,x)) 𝐽 (𝑡,x)

𝐽 (𝑡,x)
𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ
𝜙 (x̃)

∫ −𝜏− (x̃)

−𝜏+ (x̃)
𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃) 𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃)

∫ 𝜏+ (x̃)

𝜏− (x̃)
𝜌0 (X (𝑡, x̃)) 𝐽 (𝑡, x̃) 𝑑𝑡 𝑑x̃

⇒ 𝜌ne (x) ∝
∫ 𝜏+ (x)

𝜏− (x)
𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

⟨𝜙⟩0 =
〈
𝜙𝜌0

𝜌ne

〉
ne

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)
𝐽 (𝑡,x)∫ 𝜏+ (X (𝑡,x))

𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠, (X (𝑡,x)))) 𝐽 (𝑠, (X (𝑡,x))) 𝑑𝑠
𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (X (𝑡,x))
𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠 + 𝑡,x)) 𝐽 (𝑠 + 𝑡,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

〈∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
0

Besides, this procedure can be extended to the derivation of ITNEIS estimators of any target

73



density 𝜌1 as well as the derivation of FTNEIS estimators of any target density 𝜌1 as follows,

⟨𝜙⟩1 =
〈
𝜙𝜌1

𝜌ne

〉
ne

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)
𝐽 (𝑡,x)∫ 𝜏+ (X (𝑡,x))

𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠, (X (𝑡,x)))) 𝐽 (𝑠, (X (𝑡,x))) 𝑑𝑠
𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (X (𝑡,x))
𝜏− (X (𝑡,x)) 𝜌0 (X (𝑠 + 𝑡,x)) 𝐽 (𝑠 + 𝑡,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

〈∫ 𝜏+ (x)

𝜏− (x)

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝜏+ (x)
𝜏− (x) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
0

⟨𝜙⟩ne ≡
∫
Γ
𝜙 (x) 𝜌ne (x) 𝑑x

∝
∫
Γ

∫ 𝜏+

𝜏−
𝜙 (X (𝑡,x)) 𝐽 (𝑡,x)

𝐽 (𝑡,x)
𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ
𝜙 (x̃)

∫ 𝜏+

𝜏−
𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃) 𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙 (x̃)

∫ −𝜏−

−𝜏+
𝜌0 (X (𝑡, x̃)) 𝐽 (𝑡, x̃) 𝑑𝑡 𝑑x̃

⇒ 𝜌ne (x) ∝
∫ −𝜏−

−𝜏+
𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡
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⟨𝜙⟩1 =
〈
𝜙𝜌1

𝜌ne

〉
ne

=

∫
Γ

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)
𝐽 (𝑡,x)∫ −𝜏−

−𝜏+ 𝜌0 (X (𝑠, (X (𝑡,x)))) 𝐽 (𝑠, (X (𝑡,x))) 𝑑𝑠
𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ −𝜏−
−𝜏+ 𝜌0 (X (𝑠 + 𝑡,x)) 𝐽 (𝑠 + 𝑡,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

∫
Γ

∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡𝜌0 (x) 𝑑x

=

〈∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

〉
0

3.5 Performance of NEIS estimators

Since the generalized NEIS estimators are unbiased by Eq. 3.13 and the above derivation, the

performance of NEIS estimators is measured by the variance of NEIS estimators. In this section,

we show that achieving good performance (low variance) of NEIS estimators is not as simple as

we may have thought.

At a first glance, one may think that the variance of NEIS estimators should be computed as

follows,
𝑉

[
𝜙neq

]
=

〈��𝜙neq��2〉
0
−

〈
𝜙neq

〉2
0 =

〈��𝜙neq��2〉
0
− ⟨𝜙⟩21

=

∫
Γ
𝜙2
neq (x) 𝜌0 (x) 𝑑x − ⟨𝜙⟩21

Since ⟨𝜙⟩1 is a constant, to optimize 𝐽 , we just need to optimize the first term of the above

expression. However, one may notice that we can choose 𝐽 as large as possible to make the

variance as small as possible and this is obviously not true in practice. Therefore we should find

another reasonable way to compute the variance of NEIS estimators.

We start from ITNEIS estimators and then extend the idea to FTNEIS estimators. Regarding

NEIS estimators, since we are considering trajectories with deterministic dynamics, the whole
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space of trajectories can be decomposed into those for a particular set of starting points x. If

there exists a time 𝑡 , such that X (𝑡,x) = x̃, then x̃ belongs to the trajectory characterized by

starting point x. Between two trajectories, either there is no intersection point or every point in

one trajectory is in the other trajectory and vice versa. Therefore ⟨𝜙⟩1 is made up of contributions

of mean value from each trajectory, and by independence of each trajectory, the contribution of

variance of the NEIS estimator can be optimized respectively.

In the case of ITNEIS estimators, with given trajectory, we cannot distinguish the starting

point among sample points along the trajectory generated by the starting point following a cho-

sen equation of motion or flow. In other words, any sample point along the trajectory can be the

generator of the trajectory and we get exactly the same trajectories from these sample points.

Hence the contribution of a specific trajectory can be computed as follows,∫ +∞

−∞
𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

= 𝜙neq (x)
∫ +∞

−∞
𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

=

∫ +∞

−∞
𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

Although sample points are evenly sampled in terms of time, they are not evenly sampled

regarding phase space. Hence the 𝐽 (𝑡,x) term in the line integral serves as “width” between two

adjacent sample points X (𝑡,x) and X (𝑡 + 𝛿𝑡,x). A similar idea was introduced by Tuckerman

and coworkers [61, 62], where the Jacobian was understood as the ratio of the determinant of

some metric tensor which describes the geometry of the phase space. In practice, one would

expect sample points distribute exponentially along the trajectory when “quench” dynamics is

performed.

The first line of the above equality computes the contribution of the infinitely long trajectory

generated by the starting point x from a non-equilibrium perspective: sum of the product of the

probability of each sample point along the trajectory as if it were chosen as the starting point
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with starting density 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) with the non-equilibrium estimate at each starting

point 𝜙neq (X (𝑡,x)).

The middle line holds true by the fact that 𝜙neq (X (𝑡,x)) 𝐽 (𝑡,x) = 𝜙neq (x) 𝐽 (𝑡,x), which

represents some kind of detailed balance along the infinitely long trajectory generated by the

starting point x.

The last line computes the contribution of the trajectory from an equilibrium perspective: sum

of the product of the probability of each sample point along the trajectory as if it were drawn as

the starting point with target density 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) with the corresponding equilibrium

estimate at each starting point 𝜙 (X (𝑡,x)). We have verified that the contributions of the in-

finitely long trajectory generated by the starting point x from these two perspectives are the

same.

Then the unbiased property of ITNEIS estimators can be understood in two ways as shown

in Eq. 3.15. In the first line, the mean value is computed in a conventional way: sum of the non-

equilibrium estimate at each starting point x with the probability density 𝜌0 (x). In the second

line, the mean value is computed in another way in terms of “path integral”: sum of the non-

equilibrium estimate at each point along the infinitely long trajectory generated by the starting

pointx (the former part of the expression) with the probability density of the starting point 𝜌0 (x)

(the latter part of the expression).

⟨𝜙⟩1 =
∫ +∞

−∞
𝜙neq (x) 𝜌0 (x) 𝑑x

=

∫
Γ

∫ +∞
−∞ 𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝜌0 (x) 𝑑x

(3.15)

Therefore, the variance of the ITNEIS estimator can be computed in the two corresponding

ways up to a constant ⟨𝜙⟩21 as shown in Eq. 3.16. In the first line, the variance of the ITNEIS

estimator Var(1) is computed in a conventional way: sum of the error function 𝑉1 (x) at each

starting pointxwith the probability density 𝜌0 (x). In the second line, the variance of the ITNEIS
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estimator Var(2) is computed in another way: sum of the error function 𝑉2 (x) at each starting

point x (the former part of the expression) with the probability density 𝜌0 (x) (the latter part of

the expression). The physical interpretation of the error function 𝑉2 is the mean variance along

the infinitely long trajectory generated by the starting point x.

Var(1)
[
𝜙neq

]
=

∫
Γ

��𝜙neq (x)��2 𝜌0 (x) 𝑑x ≡ ⟨𝑉1⟩0

Var(2)
[
𝜙neq

]
=

∫
Γ

∫ +∞
−∞

��𝜙neq (X (𝑡,x))��2 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝜌0 (x) 𝑑x ≡ ⟨𝑉2⟩0
(3.16)

3.6 Numerical results

To verify our new theory of computing variance of the generalized NEIS estimators, we test

our theory by comparing consistency of accuracy of estimation of ratio of partition functions

(Eq. 3.17) at two different temperatures (starting temperature 𝑇0 = 2.0 and target temperature

𝑇 = 1.0) in reduced unit and the value of variance calculated by Eq. 3.16.

𝑄 (𝛽)
𝑄 (𝛽0)

=

∫
Γ
𝜌0 (x)

∫ 𝜏+ (x)
𝜏− (x) exp (−𝛽ℋ (X (𝑡,x)) − 𝑑𝛾𝑡) 𝑑𝑡∫ 𝜏+ (x)

𝜏− (x) exp (−𝛽0ℋ (X (𝑠,x))) 𝐽 (𝑠,x) 𝑑𝑠
𝑑x (3.17)

Using LAMMPS [73, 74], we sample 𝑁 = 1000 independent harmonic springs in 3D with

identical masses𝑚 = 1.0 and identical oscillation frequencies 𝜔 =
√

5, in reduced units. We first

generate 2000 starting points using Langevin dynamics [80] with friction coefficient 𝛾𝐿𝐷 = 0.01

and time step Δ𝑡 = 0.001 in reduced units. To do so, we first equilibrate the system for 107 steps

(𝜏 = 104 in reduced LJ time units) at 𝑇 = 2.0, 𝛽0 = 0.5. Then we run production simulation

for 2 × 107 steps and save 2000 starting points for further “quench” dynamics simulations with

forward unitless time 𝛾𝜏+ = 2.0 + ln (𝑇0/𝑇 ) and backward unitless time 𝛾𝜏− = 2.0 − ln (𝑇0/𝑇 )

with 𝛾quench = 0.01 as suggested from our work in the previous chapter [66]. Simulations un-
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der “quench” dynamics are done in parallel by python module Parsl [79]. A lower total energy

boundary is set as the maximal value of final total energies {ℋ (X (𝜏+,x𝑖))}𝑖=1,...,𝑁 in forward

simulations, and an upper total energy boundary is set as the minimal value of final total ener-

gies {ℋ (X (𝜏−,x𝑖))}𝑖=1,...,𝑁 in backward simulations. 𝜏− (x) is the first time when the trajectory

starting from x touches upper boundary in the forward simulation and 𝜏+ (x) is the first time

when the trajectory starting from x touches lower boundary in the backward simulation.

In Fig. 3.1, black line shows how accuracy of various generalized unbiased ITNEIS estima-

tors characterized by 𝐽 = 𝐽𝛼 changes with 𝛼 . Accuracy is measured by absolute relative error of

ln (𝑄 (𝛽) /𝑄 (𝛽0)). Two red lines show how variances computed by two different ways of gen-

eralized unbiased ITNEIS estimators change with 𝛼 . Red dashed line uses the conventional way

(𝑉1 in Eq. 3.16) to compute the variance of the generalized unbiased ITNEIS estimators while red

solid line uses the new way (𝑉2 in Eq. 3.16) to compute the variance of the generalized unbiased

ITNEIS estimators.

Maximal accuracy with minimal absolute relative error of the generalized unbiased ITNEIS

estimators is achieved around 𝛼 = 1.0, which suggests that the original unbiased ITNEIS estima-

tor (Eq. 3.3) could be the optimal unbiased NEIS estimator with given dynamics. The conventional

variance 𝑉1 reaches maximum around 𝛼 = 1.0, which implies that the original unbiased ITNEIS

estimator is very likely to be the worst unbiased ITNEIS estimators among all these general-

ized unbiased ITNEIS estimators characterized by 𝐽 = 𝐽𝛼 , while the new variance 𝑉2 reaches its

minimum value around 𝛼 = 1.0, which confirms our observation of accuracy of the generalized

unbiased ITNEIS estimators.

Therefore, the new 𝑉2 is more reasonable as a measurement of the variance of the unbiased

generalized ITNEIS estimators that correctly measures the performance of the generalized un-

biased ITNEIS estimators. It also suggests that the unbiased property of the generalized ITNEIS

estimators comes from the unbiased contribution of the infinitely long trajectory generated by
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Figure 3.1: Comparison of trend of accuracy (black) of various generalized unbiased ITNEIS estimators
characterized by 𝐽 = 𝐽𝛼 and trend of value of the corresponding two variances (red) of the generalized
unbiased ITNEIS estimators.

any starting point as follows,

⟨𝜙⟩1 =
∫
Γ

∫ +∞
−∞ 𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝜌0 (x) 𝑑x.
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3.7 Optimal NEIS estimator

In order to optimize the second measurement 𝑉2 of the variance of the ITNEIS estimator in

Eq. 3.16, the expression of 𝜙neq is plugged in and the value of 𝑉 (x) at each starting point x is

optimized respectively with respect to the virtual Jacobian 𝐽 as follows,

𝑉 (x) ≡
∫ +∞
−∞

��𝜙neq (X (𝑡,x))��2 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

=
��𝜙neq (x)��2 ∫ +∞

−∞ 𝜌0 (X (𝑡,x)) 𝐽
2 (𝑡,x)
𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

.

𝜙
opt
neq (x) ≡

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
(3.18)

The minimum is achieved when 𝐽 (𝑡,x) = 𝐽 (𝑡,x) and we get an optimal ITNEIS estimator

𝜙
opt
neq defined by Eq. 3.18. This result suggests that the original ITNEIS estimator we have used in

the previous chapter is the optimal one with given invertible trajectories. Besides, the measure-

ment of the variance of the optimal ITNEIS estimator𝑉2 in terms of “path integral” happens to be

the same as the conventional measurement of the variance of the optimal ITNEIS estimator 𝑉1.

In the case of FTNEIS estimators, we can still find the same equality along the given infinitely

long trajectory. Firstly, we define a FTNEIS estimator with fixed 𝜏−, 𝜏+ as follows,

𝜙𝜏
−,𝜏+

neq (x) ≡
∫ 𝜏+

𝜏−

𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x)∫ 𝑡−𝜏−
𝑡−𝜏+ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑𝑡

For simplicity, letX𝑖 denoteX (𝑖Δ𝑡,x) and 𝐽𝑖 denote 𝐽 (𝑖Δ𝑡,x). We also let 𝜏− = −Δ𝑡, 𝜏+ = 0,
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and the following result can be extended to any choice of 𝜏−, 𝜏+.

𝜙neq (X0) 𝜌0 (X0) 𝐽0

=
𝜌0 (X0) 𝐽0

𝜌0 (X−1) 𝐽−1 + 𝜌0 (X0) 𝐽0
𝜙 (X−1) 𝜌1 (X−1) 𝐽−1 +

𝜌0 (X0) 𝐽0
𝜌0 (X0) 𝐽0 + 𝜌0 (X1) 𝐽1

𝜙 (X0) 𝜌1 (X0) 𝐽0

𝜙neq (X1) 𝜌0 (X1) 𝐽1

=
𝜌0 (X1) 𝐽1

𝜌0 (X0) 𝐽0 + 𝜌0 (X1) 𝐽1
𝜙 (X0) 𝜌1 (X0) 𝐽0 +

𝜌0 (X1) 𝐽1
𝜌0 (X1) 𝐽1 + 𝜌0 (X2) 𝐽2

𝜙 (X1) 𝜌1 (X1) 𝐽1

⇒ 𝜙neq (X0) 𝜌0 (X0) 𝐽0 + 𝜙neq (X1) 𝜌0 (X1) 𝐽1

=
𝜌0 (X0) 𝐽0

𝜌0 (X−1) 𝐽−1 + 𝜌0 (X0) 𝐽0
𝜙 (X−1) 𝜌1 (X−1) 𝐽−1

+ 𝜙 (X0) 𝜌1 (X0) 𝐽0

+ 𝜌0 (X1) 𝐽1
𝜌0 (X1) 𝐽1 + 𝜌0 (X2) 𝐽2

𝜙 (X1) 𝜌1 (X1) 𝐽1

⇒
+∞∑︁
𝑖=−∞

𝜙neq (X𝑖) 𝜌0 (X𝑖) 𝐽𝑖 =
+∞∑︁
𝑖=−∞

𝜙 (X𝑖) 𝜌1 (X𝑖) 𝐽𝑖

⇒
∫ +∞

−∞
𝜙𝜏
−,𝜏+

neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡 =
∫ +∞

−∞
𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

By the equality shown in the last line, we can understand the unbiased property of generalized

FTNEIS estimators exactly the same way as we have already done in the case of generalized

ITNEIS estimators as follows,

∫
Γ

∫ +∞
−∞ 𝜙

𝜏−,𝜏+
neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝜌0 (x) 𝑑x

=

∫
Γ

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝜌0 (x) 𝑑x

=

∫
Γ
𝜙 ITNEIS
neq (x) 𝜌0 (x) 𝑑x = ⟨𝜙⟩1

Note that the equality holds when 𝜏−, 𝜏+ are fixed within each trajectory and it does not re-
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quire all trajectories share the same 𝜏−, 𝜏+. The correspondingmeasurement𝑉 (x) of the variance

of the generalized FTNEIS estimator 𝜙𝜏
−,𝜏+

neq is shown as follows,

𝑉 (x) ≡

∫ +∞
−∞

���𝜙𝜏−,𝜏+neq (X (𝑡,x))
���2 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

⩾

(∫ +∞
−∞ 𝜙

𝜏−,𝜏+
neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

)2

=

(∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

)2

=

���𝜙opt
neq (x)

���2 ≡ 𝑉 opt (x)

This suggests that whatever 𝜏−, 𝜏+, 𝐽 are chosen in the expression of generalized FTNEIS es-

timator 𝜙𝜏
−,𝜏+

neq , the performance of generalized FTNEIS estimators is always no better than the

optimal ITNEIS estimator 𝜙opt
neq defined in Eq. 3.18. Therefore, the optimal ITNEIS estimator 𝜙opt

neq

is actually the optimal NEIS estimator among the class of unbiased generalized NEIS estimators

with given dynamics.

The unbiased ITNEIS estimator defined by Eq. 3.3 does not happen to be the optimal unbi-

ased NEIS estimators but destined to be the optimal unbiased NEIS estimator. Firstly, we show

that unbiased property of NEIS estimators is equivalent to the fact that the contribution of the

infinitely long trajectory generated by any starting point is unbiased:

⟨𝜙⟩1 =
〈
𝜙neq

〉
0 ⇔∫ +∞

−∞
𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡 =

∫ +∞

−∞
𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡

The forward direction (⇒) is obvious since the generalized NEIS estimators should be unbi-
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ased in every trajectory starting at x. The backward direction (⇐) is proved as follows,

⟨𝜙⟩1 ≡
∫
Γ
𝜙 (x) 𝜌1 (x) 𝑑x

=

∫
Γ
𝜙 (x) 𝜌1 (x)

∫ +∞
−∞ 𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜙 (X (𝑠,x)) 𝜌1 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝑑x

=

∫
Γ
𝜙neq (x̃) 𝜌0 (x̃)

∫ +∞

−∞

𝜙 (X (−𝑡, x̃)) 𝜌1 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃)∫ +∞
−∞ 𝜙 (X (𝑠 − 𝑡, x̃)) 𝜌1 (X (𝑠 − 𝑡, x̃)) 𝐽 (𝑠 − 𝑡, x̃) 𝑑𝑠

𝑑𝑡 𝑑x̃

=

∫
Γ
𝜙neq (x̃) 𝜌0 (x̃) 𝑑x̃ ≡

〈
𝜙neq

〉
0

With this knowledge, the unbiased property of generalized NEIS estimators and the corre-

sponding variance of these unbiased NEIS estimators can be expressed as follows,

⟨𝜙⟩1 ≡
∫
Γ
𝜙 (x) 𝜌1 (x) 𝑑x =

∫
Γ
𝜙
opt
neq (x) 𝜌0 (x) 𝑑x

=

∫
Γ

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝜌0 (x) 𝑑x

=

∫
Γ

∫ +∞
−∞ 𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠
𝜌0 (x) 𝑑x

Var
[
𝜙neq

]
≡

∫
Γ

∫ +∞
−∞

��𝜙neq (X (𝑡,x))��2 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

𝜌0 (x) 𝑑x

⩾
∫
Γ

(∫ +∞
−∞ 𝜙neq (X (𝑡,x)) 𝜌0 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

)2

𝜌0 (x) 𝑑x

=

∫
Γ

(∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

)2

𝜌0 (x) 𝑑x

=

∫
Γ

���𝜙opt
neq (x)

���2 𝜌0 (x) 𝑑x ≡ Var
[
𝜙
opt
neq

]
The equality is achieved when the optimal unbiased NEIS estimator gives a constant non-

equilibrium estimate at any point along the given trajectory with given dynamics. Hence the
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expression of the optimal unbiased NEIS estimator can be easily derived as follows,∫ +∞

−∞
𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡 =

∫ +∞

−∞
𝜙
opt
neq (X (𝑠,x)) 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑡

= 𝜙
opt
neq (x)

∫ +∞

−∞
𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑡

⇒ 𝜙
opt
neq (x) =

∫ +∞
−∞ 𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ +∞

−∞ 𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

In practice, it is not possible to get sample points at time 𝑡 = ±∞, so it is not a bad idea to

use a truncated version (Eq. 3.19) as long as both the numerator and the denominator converge

within adequately small tolerance and this can be achieved by a dissipative “quench” dynamics

from our work [66] in the previous chapter, although it is not rigorously unbiased.

𝜙
opt-like
neq (x) ≡

∫ 𝜏+

𝜏−
𝜙 (X (𝑡,x)) 𝜌1 (X (𝑡,x)) 𝐽 (𝑡,x) 𝑑𝑡∫ 𝜏+

𝜏−
𝜌0 (X (𝑠,x)) 𝐽 (𝑠,x) 𝑑𝑠

(3.19)

3.8 Conclusions

Inspired by the idea of Ref. [65], we generalized unbiased NEIS estimators characterized by a

virtual Jacobian 𝐽 with given dynamics. In the course of study of the generalized NEIS estima-

tors, we realized that the traditional way of computing variance of generalized NEIS estimator

was incorrect and we have proposed the correct way of calculating variance of the generalized

NEIS estimators in the second line of Eq. 3.16. With the correct way of computing variance of

the generalized NEIS estimators, we have proved that there exists an optimal NEIS estimator 𝜙opt
neq

(Eq. 3.18) among the class of unbiased generalized NEIS estimators with given dynamics, which is

exactly the same as what we used in the previous chapter. Moreover, with further understanding

of the unbiased property of the generalized NEIS estimators as well as the correct way of com-

puting variance of the generalized NEIS estimators, this unbiased NEIS estimator is destined to
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be the optimal one by Jensen’s inequality [63]. This is a bittersweet story. The happy side is that

there is no need to optimize FTNEIS estimators with given dynamics while the sad side is that

we do not obtain a better unbiased NEIS estimator than what we currently use and the only way

to improve the performance of the unbiased NEIS estimators is to find better dynamics or flow,

which is not a trivial or easy task. In the end, our theory provides a suggestion on when to ter-

minate simulation under “quench” dynamics and a corresponding good NEIS estimator defined

in Eq. 3.19.
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4 | Computing basin volume by density

propagation method

This chapter is an extension of the Ch. 5 of Ref. [71], and has been performed in close discus-

sion with Prof. Stefano Martiniani and Dr. Mathias Casiulis.

4.1 Abstract

Computation of basin volume can be used as a direct computation of configurational entropy

by so-called “mean basin volume” (MBV) method. A random walk with several starting points is

used to compute basin volume. For each starting point, a process of energy minimization using

gradient descent dynamics is used to determine which basin the point belongs to. Data generated

via such a process is mostly wasted since only the final point of the trajectory of gradient descent

dynamics is used to determine the basin. With the idea of density propagation, all sample points

along the trajectory of gradient descent dynamics can be used to determine the basin center as

well as to compute basin volume. By drawing starting points from the surface of a hyperball

centered at basin center with proper radius, all the starting points are accepted inside the basin

volume and hence efficiency is further improved. We show that the method works well in high

dimensional gaussian system. In hypercube system where there are many spikes, an “umbrella

sampling”-like dynamics can be used to improve the performance and achieve a decent accuracy.
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4.2 Introduction

Entropy [17, 19, 90, 91], defined as a measure of the number of accessible microstates, is

the key quantity to understand the mechanism of emergent behavior such as phase transitions.

Computational cost of direct sampling of microstates is prohibitively expensive. A promising

method, the so-called “mean basin volume” (MBV) method [92–95], gives a direct computation

of the configurational entropy of a system. The idea of the MBV method is as follows. The whole

space can be considered as a composition of basins of attraction. Here, a basin of attraction is

a collection of points that eventually fall into the same point (considered as the center of basin)

under gradient descent. With this simple relationship, the number of basin of attraction Ω can

be expressed by mean basin volume ⟨𝑣⟩ with accessible volumeV known apriori,

V =

Ω∑︁
𝑖=1

𝑣𝑖 = Ω ⟨𝑣⟩ . (4.1)

Then the remaining challenge is how to make an estimate of the volume of basin of attraction

efficiently in high dimensions since for each sample point, a gradient descent dynamics is per-

formed to verify which basin of attraction the starting point belongs to, and almost all the points

along the trajectory of gradient descent dynamics are wasted. Here we use so-called density

propagation method, which make use of novel mathematical results, so that all the points along

the trajectory of gradient descent dynamics (to verify the starting point belongs to the basin of

attraction) as well as the trajectory of gradient ascent dynamics (to explore as large space of the

basin of attraction as possible) contribute to the estimate of volume of the basin of attraction.
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4.3 Density propagation method

4.3.1 Starting from a known volume

Consider a 𝑑-dimensional system with a potential energy 𝑈 (x) as a scalar function of co-

ordinates x ∈ R𝑑 . A basin of attraction is characterized by a local minimum c of the potential

energy𝑈 (x). A point x is assigned to the basin if the point x converges to the local minimum c

of the potential energy𝑈 (x) following gradient descent dynamics (Eq. 4.2), whereX (𝑡,x) ∈ R𝑑

is the coordinate after time 𝑡 following an invertible dynamics starting at x ∈ R𝑑 . Note that

X (𝑡,x) → c as 𝑡 → +∞.
𝑑

𝑑𝑡
X (𝑡,x) = −∇𝑈 (X (𝑡,x)) (4.2)

Following Ch. 3, the corresponding Jacobian of the gradient descent dynamics is defined by

Eq. 4.3, where Tr is the trace of a matrix and H is the hessian matrix,

𝐽 (𝑡,x) = exp
(∫ 𝑡

0
−∇ ·∇𝑈 (X (𝑡,x)) 𝑑𝑠

)
= exp

(∫ 𝑡

0
−Tr (H {𝑈 (X (𝑡,x))}) 𝑑𝑠

)
(4.3)

Let Γ denote all points x that belongs to the basin characterized by the local minimum c. In

that case, the volume of Γ is given by 𝑉Γ =
∫
R𝑑 1Γ (x) 𝑑x.

A gradient ascent dynamics, which can be understood as performing gradient descent dynam-

ics backward in time, is used to determine the boundary of the basin. Also, note thatX (𝑡,x) →

y ∈ 𝜕Γ as 𝑡 → −∞.

In practice, it is not possible to run simulations infinitely long. Therefore, we enforce that a

simulation is terminated at a specific step if it meets some finite-time convergence criterion such

as |∇𝑈 (x) | ⩽ 𝜖 , where 𝜖 is a predefined tolerance. The local minimum c of the potential energy

𝑈 (x) is then estimated by the mean of all final coordinates.

A reference region 𝛾 ⊂ Γ with a volume 𝑉𝛾 that contains the local minimum c is introduced.
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Here we choose 𝛾 as a 𝑑-dimensional hyperball centered at c since the volume𝑉𝛾 and the surface

area 𝑆𝜕𝛾 of the reference region𝛾 can be calculated analytically [96–98]. Since we do not know the

local minimum c exactly from simulations, the radius of the hyperball cannot be set too small.

On the other hand, the radius of hyperball cannot be set too large, since not all points in the

hyperball belong to the basin of attraction if the local minimum lies near the boundary of the

basin of attraction. If a starting point is drawn in the region Γ − 𝛾 = {x|x ∈ Γ,x ∉ 𝛾}, then

there exists and only exists a positive finite time 𝜏+ (x), such thatX (𝜏+ (x) ,x) ∈ 𝜕𝛾 since every

point in the basin Γ inevitably falls into the basin center (local minimum c). The non-equilibrium

density 𝜌 (x, 𝑡) is governed by the mass conservation law (Eq. 4.4) with initial condition defined

by Eq. 4.5.
𝜕

𝜕𝑡
𝜌 (x, 𝑡) = ∇ · (𝜌 (x, 𝑡)∇𝑈 (x)) (4.4)

𝜌0(x) ≡ 𝜌 (x, 0) =


1

𝑉Γ−𝛾
x ∈ Γ − 𝛾

0 x ∈ 𝛾
(4.5)

Now consider the total flux through the reference region over time Φ𝜕𝛾 (Eq. 4.6), where n̂ (x)

is the unit vector normal to the reference surface 𝜕𝛾 at x ∈ 𝜕𝛾 . Since starting points are drawn

in the region Γ − 𝛾 , only forward simulation with positive times contributes to the total flux.

Φ𝜕𝛾 ≡
∮
𝜕𝛾

∫ +∞

0
n̂ (x) · (𝜌 (x, 𝑡)∇𝑈 (x)) 𝑑𝑡 𝑑x (4.6)

On the other hand, all the change of mass comes from the flux through the reference surface

and eventually all the mass should be inside the reference region 𝛾 , which gives us the following
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result by the divergence theorem [99, 100],

1 =

∫
𝛾

𝜌 (x, +∞) − 𝜌 (x, 0) 𝑑x

=

∫
𝛾

∫ +∞

0

𝜕

𝜕𝑡
𝜌 (x, 𝑡) 𝑑𝑡 𝑑x

=

∫
𝛾

∫ +∞

0
∇ · (𝜌 (x, 𝑡)∇𝑈 (x)) 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

∫ +∞

0
n̂ (x) · (𝜌 (x, 𝑡)∇𝑈 (x)) 𝑑𝑡 𝑑x ≡ Φ𝜕𝛾

Moreover, the mass density at position x and time 𝑡 is generated by the initial density 𝜌0 in

the region Γ − 𝛾 being transported by the gradient descent dynamics, which gives

𝜌 (x, 𝑡) =
∫
Γ−𝛾

𝜌0 (y) 𝛿 (X (𝑡,y) − x) 𝑑y

Summarizing these results, we have the key equality (Eq. 4.7) in this chapter.

1 =

∮
𝜕𝛾

∫ +∞

0
n̂ (x) · (𝜌 (x, 𝑡)∇𝑈 (x)) 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

0

∫
Γ−𝛾

𝜌0 (y) 𝛿 (X (𝑡,y) − x) 𝑑y 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

0

∫
Γ−𝛾

𝜌0 (X (−𝑡, ỹ)) 𝛿 (ỹ − x) 𝐽 (−𝑡, ỹ) 𝑑ỹ 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

0
𝜌0 (X (−𝑡,x)) 𝐽 (−𝑡,x) 𝑑𝑡 𝑑x

(4.7)

Note that from the second line to the third line in Eq. 4.7, we have made a change of variable

ỹ ≡ X (𝑡,y) and by Property 3 of invertible dynamics, we get the result of the third line. The

last line comes from one of Dirac delta function [101] properties.

We can define a surface density 𝜈 (x) on the reference surface 𝜕𝛾 by Eq. 4.8.

𝜈 (x) ≡ n̂ (x) ·∇𝑈 (x)
∫ +∞

0
𝜌0 (X (−𝑡,x)) 𝐽 (−𝑡,x) 𝑑𝑡 (4.8)
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By the last line of Eq. 4.7, this surface density 𝜈 (x) is normalized. The physical interpretation of

𝜈 (x) is the contribution of mass density from a backward trajectory (gradient ascent dynamics),

which is the same as counting all the mass drawn under some initial density 𝜌0 in the region

Γ−𝛾 and eventually stopping at the point x on the reference surface 𝜕𝛾 from a forward trajectory

(gradient descent dynamics). This explains where the term “density propagation” comes from.

Following this idea, the mean value of a test function 𝑓 (x) on the reference surface 𝜕𝛾 with

probability 𝜈 (x) can be expressed by the sum of mass contribution of all trajectories that stops

at the point x on the reference surface 𝜕𝛾 , as shown in Eq. 4.9.

∮
𝜕𝛾

𝑓 (x) 𝜈 (x) 𝑑x =

∫
Γ−𝛾

𝑓
(
X

(
𝜏+ (x) ,x

) )
𝜌0 (x) 𝑑x,X

(
𝜏+ (x) ,x

)
∈ 𝜕𝛾 (4.9)

In other words, we have established a connection between the average on the reference surface

⟨𝑓 ⟩𝜈 = ⟨𝑓 (X (𝜏+ (x) ,x))⟩0, and its value in the volume.

With this connection, volume of the region Γ − 𝛾 can be expressed by the surface of the

reference region 𝛾 by Eq. 4.10, where x̃ ≡X (𝜏+ (x) ,x) ∈ 𝜕𝛾 .

𝑆𝜕𝛾 =

∮
𝜕𝛾

1𝑑x =

∮
𝜕𝛾

𝜈 (x)
𝜈 (x) 𝑑x

≡
〈

1
𝜈 (x)

〉
𝜈

=

〈
1

𝜈 (X (𝜏+ (x) ,x))

〉
0

≡
∫
Γ−𝛾

𝜌0 (x)
𝜈 (X (𝜏+ (x) ,x)) 𝑑x

=

∫
Γ−𝛾

𝜌0 (x)
n̂ (x̃) ·∇𝑈 (x̃)

∫ +∞
0 𝜌0 (X (−𝑡, x̃)) 𝐽 (−𝑡, x̃) 𝑑𝑡

𝑑x

≡ 𝑉Γ−𝛾

〈
1

n̂ (x̃) ·∇𝑈 (x̃)
∫ +∞

0 𝐽 (−𝑡, x̃) 𝑑𝑡

〉
0

(4.10)

Summarizing the above results, the volume of the basin can be expressed as Eq. 4.11, where
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x̃ ≡X (𝜏+ (x) ,x) ∈ 𝜕𝛾 .

𝑉Γ = 𝑉𝛾 +𝑉Γ−𝛾

= 𝑉𝛾 +
𝑆𝜕𝛾〈(

n̂ (x̃) ·∇𝑈 (x̃)
∫ +∞

0 𝐽 (−𝑡, x̃) 𝑑𝑡
)−1

〉
0

(4.11)

Simulation are performed using the so-called “initiate-then-propagate” algorithm. Several

starting points are drawn uniformly in space. Note that some of the starting points may not be

used to compute basin volume 𝑉Γ if they do not belong to basin Γ. Then for each starting point,

we evolve the starting point forward in time under gradient descent dynamics and backward in

time under gradient ascent dynamics until the simulation meets the termination condition, such

as |∇𝑈 (x) | ⩽ 𝜖 with 𝜖 ≪ 1.

If we know the exact location of basin center, we can use that in our estimates; otherwise, the

location of c is evaluated as the mean position of the final positions in the forward simulations.

Note that c is generally not the center of the basin of attraction. The accuracy of the basin center

c does not affect our results as long as we make sure that all the forward simulations of the

starting points that belong to the basin Γ eventually fall inside the reference hyperball centered

at the chosen c. Eventually with these trajectories generated by valid starting points that belong

to the basin Γ, the basin volume 𝑉Γ is computed by Eq. 4.11.

4.3.2 Starting from a known surface

Some starting points may be wasted if they do not belong to the basin of interest Γ. One

way to improve the efficiency of the sampling is to draw starting points on the surface 𝜕𝛾 of the

reference hyperball 𝛾 with the knowledge of c, either using the final position of one forward

trajectory under gradient descent dynamics or knowing the local minimum apriori.

In order to establish a connection between the volume of interest𝑉Γ and the reference surface
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𝑆𝜕𝛾 , we generalize the key equality in this chapter (Eq. 4.7) and obtain three equalities shown

in Eq. 4.12, where 𝐽 (𝑡,x) ≡ exp
(∫ 𝑡

0 −∇ ·∇𝑈 (X (𝑠,x)) 𝑑𝑠
)
is the corresponding Jacobian of

gradient descent dynamics.



𝑉Γ−𝛾 =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ 0

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

𝑉𝛾 =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

0
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

𝑉Γ =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

(4.12)

Note that the first equality is exactly the same as Eq. 4.7 after changing variable 𝑡 to −𝑡 and

plugging in the expression of 𝜌0 (x) defined by Eq. 4.5. This equality can be understood in an-

other way; the latter factor
∫ 0
−∞ 𝐽 (𝑡,x) 𝑑𝑡 𝑑x is the total volume contribution along the trajec-

tory generated by the point x, propagated from the starting volume 𝑑x and the former factor

n̂ (x) ·∇𝑈 (x) is the projective volume contribution that passes through the reference surface

𝜕𝛾 .

The second equality can be derived following exactly the same procedure as for Eq. 4.7 with

starting points uniformly drawn in the reference volume 𝛾 .

Summing the first and the second equalities gives the third equality.

When starting points are drawn from the reference surface 𝜕𝛾 under an arbitrary distribution

𝜇, then three volumes𝑉Γ−𝛾 ,𝑉Γ,𝑉𝛾 can be estimated by Eq. 4.13, where 𝐽 (𝑡,x) is the corresponding

Jacobian of gradient descent dynamics.
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

𝑉Γ−𝛾 =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ 0

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

𝜇 (x)
𝜇 (x) (n̂ (x) ·∇𝑈 (x))

∫ 0

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

≡
〈
n̂ (x) ·∇𝑈 (x)

∫ 0
−∞ 𝐽 (𝑡,x) 𝑑𝑡

𝜇 (x)

〉
𝜇

𝑉𝛾 =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

0
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

𝜇 (x)
𝜇 (x) (n̂ (x) ·∇𝑈 (x))

∫ +∞

0
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

≡
〈
n̂ (x) ·∇𝑈 (x)

∫ +∞
0 𝐽 (𝑡,x) 𝑑𝑡

𝜇 (x)

〉
𝜇

𝑉Γ =

∮
𝜕𝛾

n̂ (x) ·∇𝑈 (x)
∫ +∞

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

=

∮
𝜕𝛾

𝜇 (x)
𝜇 (x) (n̂ (x) ·∇𝑈 (x))

∫ +∞

−∞
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

≡
〈
n̂ (x) ·∇𝑈 (x)

∫ +∞
−∞ 𝐽 (𝑡,x) 𝑑𝑡

𝜇 (x)

〉
𝜇

(4.13)

A trivial case is that starting points are drawn uniformly from the reference surface 𝜕𝛾 with

𝜇0 (x) = 1
𝑆𝜕𝛾

, then three volumes can be estimated by Eq. 4.14, where 𝐽 (𝑡,x) is the corresponding

Jacobian of gradient descent dynamics.



𝑉Γ−𝛾 = 𝑆𝜕𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ 0

−∞
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

𝑉𝛾 = 𝑆𝜕𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ +∞

0
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

𝑉Γ = 𝑆𝜕𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ +∞

−∞
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

(4.14)

Then there are three ways to estimate volume of the basin of interest𝑉Γ , as shown in Eq. 4.15,

where 𝑉𝛾 is the analytical expression of the volume of the hyperball and 𝑆𝜕𝛾 is the analytical
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expression of the surface of the hyperball.



𝑉
(1)
Γ = 𝑉𝛾 + 𝑆𝜕𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ 0

−∞
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

𝑉
(2)
Γ = 𝑆𝜕𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ +∞

−∞
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

𝑉
(3)
Γ = 𝑉𝛾

〈
n̂ (x) ·∇𝑈 (x)

∫ +∞
−∞ 𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0〈

n̂ (x) ·∇𝑈 (x)
∫ +∞

0 𝐽 (𝑡,x) 𝑑𝑡
〉
𝜇0

(4.15)

Another special case is that starting points y are drawn by finding the intersection points be-

tween trajectories generated by points x drawn uniformly in the space and the reference surface.

The surface density of such starting points y ≡ X (𝜏 (x) ,x) have been derived in Eq. 4.8. Then

the first estimator of volume 𝑉Γ−𝛾 in Eq. 4.13 is reduced to Eq. 4.16.

𝑉Γ−𝛾 =

〈
n̂ (y) ·∇𝑈 (y)

∫ 0
−∞ 𝐽 (𝑡,y) 𝑑𝑡

𝜈 (y)

〉
𝜈

= 𝑉Γ

〈 ∫ 0
−∞ 𝐽 (𝑡,y) 𝑑𝑡∫ +∞
−∞ 𝐽 (𝑡,y) 𝑑𝑡

〉
𝜈

= 𝑉Γ

〈∫ 𝜏 (x)
−∞ 𝐽 (𝑡,x) 𝑑𝑡∫ +∞
−∞ 𝐽 (𝑡,x) 𝑑𝑡

〉
0

(4.16)

Note that from the second line in Eq. 4.16 to the third line in Eq. 4.16, the procedure of drawing

starting points y ≡ X (𝜏 (x) ,x) with surface density 𝜈 is exactly the same as that of drawing

starting pointsx uniformly in the basin of attract𝑉Γ with probability density 𝜌0 (x) = 1
𝑉Γ
. Besides,

the result of the ratio in the second line is the same as that in the third line since the common

factor from changing variables cancels out. The significance of Eq. 4.16 is that we show that the

unbiased ITNEIS estimator of basin volume used in the previous chapters can be considered as a

special case of estimators using density propagation method at points on the reference surface.
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4.4 Numerical results

There are two main sources of error when using the density propagation method to estimate

volume of the basin of attraction. One is the sampling error, which can be reduced by drawing

more starting points. Another is the numerical error comes from the numerical integration part

of solving equation of motion, which can be reduced by choosing smaller numerical integration

step Δ𝑡 . To control the error in numerical integration part, the integration time step Δ𝑡 at position

x can be set adaptively by:

Δ𝑡 =
Θ

|∇ ·∇𝑈 (x) | , (4.17)

where Θ is a small constant, serving as the tolerance in the computation of the corresponding

Jacobian 𝐽 (𝑡,x) ≡
∫ 𝑡

0 −∇ ·∇𝑈 (x) 𝑑𝑠 . In that case, performing this integral through a discrete

summation over time integrals gives contributions of approximately equal magnitudeΘ for every

generated point.

In practice, it is not possible to get a sample point exactly on the surface 𝜕𝛾 of the reference

hyperball. A most likely scenario is that we have |X (𝑡𝑖,x) − c| > 𝑟, |X (𝑡𝑖+1,x) − c| < 𝑟 , where

𝑟 is the radius of the hyperball. In this case, we propose a simple linear interpolation method

(Eq. 4.18) to find the interpolated sample point x𝜕𝛾 on the reference surface 𝜕𝛾 between two

sample points x0 ≡ X (𝑡0,x) ,x1 ≡ X (𝑡1,x) at time 𝑡0, 𝑡1 and the corresponding time 𝑡𝜕𝛾 by

linear algebra [102], where 𝑟0 = |x0 − c| , 𝑟1 = |x1 − c| , 𝑑 = |x1 − x0 |.


𝑠 =

𝑟 2
0 − 𝑟 2

1 + 𝑑2 ±
√︃(
𝑟 2

0 − 𝑟 2
1 + 𝑑2)2 − 4𝑑2 (

𝑟 2
0 − 𝑟 2)

2𝑑2

x𝜕𝛾 = x0 + 𝑠 (x1 − x0)

𝑡𝜕𝛾 = 𝑡0 + 𝑠 (𝑡1 − 𝑡0)

(4.18)

Note that there are two possible choices of 𝑠 in Eq. 4.18, and 𝑠 such that
(
𝑡𝜕𝛾 − 𝑡0

)
·
(
𝑡𝜕𝛾 − 𝑡1

)
⩽ 0
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is used when applied for our numerical results because the linear interpolated time 𝑡𝜕𝛾 should be

within the range of 𝑡0 and 𝑡1. The following potentials are implemented by CVODE [103–106], an

open-source software library that uses variable-order, variable-step multistep methods to solve

stiff and nonstiff ordinary differential equation (ODE) systems.

4.4.1 Gaussian potential

Themethod is tested for a𝑑-dimensional Gaussian potential, defined in Eq. 4.19, whereµ ∈ R𝑑

is the minimum of the basin of attraction.

𝑈 (x) = − exp
(
− |x − µ|

2

2

)
,x ∈ R𝑑 (4.19)

Herewe chooseµ = 0 for simplicity. A boundary |x − µ| = 4 is setmanuallywhen computing the

basin volume since there is no upper bound of the potential energy and the basin volume is infinity

without the boundary. The ideal basin volume is the analytical expression of the hyperball with

radius 4 in 𝑑 dimensions, and this value is used to calculate the absolute relative error 𝜂 =

���𝑉−𝑉𝑉 ���,
where 𝑉 is the estimated basin volume and 𝑉 is the ideal value of the basin volume.

Fig. 4.1 shows the performance (measured by absolute relative error𝜂) of estimators in Eq. 4.11

and Eq. 4.15 with respect to dimension 𝐷 with choices of various radius 𝑟 of the reference hyper-

ball and tolerance Θ (Eq. 4.17). Estimations are made from trajectories generated by 2000 starting

points.

The performance of these estimators are controlled by tolerance Θ and error has the same

magnitude as that of Θ. Hence estimators are expected to have better performance with smaller

toleranceΘ at the cost of more expensive computation cost. The performance of these estimators

are also influenced by the radius 𝑟 of the reference hyperball slightly.

We observe that the performance of the estimator in Eq. 4.11 is slightly better with larger

radius 𝑟 while the performance of three estimators in Eq. 4.15 is better with smaller radius 𝑟 .
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Results of three estimators in Eq. 4.15 are hardly different and we will use the first estimator𝑉 (1)Γ

next to estimate the volume of the basin of attraction with starting points drawn from the refer-

ence surface. The performance of estimators in Eq. 4.15 is slightly better than that of estimator

in Eq. 4.11.
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Figure 4.1: Absolute relative error (𝜂) of estimators for varying dimension (𝐷) computed using a range
of Θ as described in the text. Estimators in Eq. 4.11 (A, B) and Eq. 4.15 (C, D) are tested with five Θs,
from Θ = 0.1 (red) to Θ = 0.001 (violet), in the rainbow color order. Three estimators in Eq. 4.15 (C, D) are
represented as circle, square and triangle. The radius of the reference hyperball is set as 0.01 (A, C) and
0.1 (B, D) respectively. Each estimator uses trajectories generated from 2000 starting points.
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4.4.2 “PowSumCos” potential

The method is tested in a periodic potential with period 1, defined in Eq. 4.20.

𝑈 (𝑥1, . . . , 𝑥𝑑) =
(
1 + 𝑑 +

𝑑∑︁
𝑖=1

cos (2𝜋𝑥𝑖)
) 1

2

(4.20)

Therefore, the basin of attraction is a hypercube with length 1 in 𝑑 dimensions, and the corre-

sponding ideal basin volume is 1𝑑 = 1. Fig. 4.2 A shows performance (measured by absolute

relative error 𝜂) of the first estimator in Eq. 4.15 with respect to dimension 𝐷 with tolerance

Θ = 0.01, radius of the reference hyperball 𝑟 = 0.01 and 2000 starting points drawn uniformly on

the reference surface. Fig. 4.2 B shows the performance of the estimator in Eq. 4.11 with respect

to dimension 𝐷 with tolerance Θ = 0.01, radius of the reference hyperball 𝑟 = 0.01 and 2000

starting points drawn uniformly in the space Γ − 𝛾 .

Both estimators fail when 𝐷 ⩾ 16 but they fail in two different manners. The estimator using

starting points on the reference surface (Eq. 4.15) gives an estimate of 0 while the estimator using

starting points in the basin (Eq. 4.11) gives a very large value. Moreover, the estimator in Eq. 4.11

works slightly better while the performance of the estimators in Eq. 4.15 is more stable.

Fig. 4.2 C shows the performance of the first estimator in Eq. 4.15 with respect to dimension

𝐷 and number of starting points on the reference surface 𝑁𝑇 with radius 𝑟 = 0.01 and tolerance

Θ = 0.01. Using more starting points does not solve the issue of poor estimates. Fig. 4.2 D shows

some selective sample trajectories on top of the plot of potential energy of the “PowSumCos”

potential in 2D. Almost all trajectories terminate at the corner of the square (“spikes” of the

hypercube when the dimension is large), although starting points are drawn uniformly on the

reference surface. Furthermore, some rare trajectories that terminate at points other than corners

of the square contribute several magnitude greater than those common trajectories, which could

be the reason why these estimators fail in high dimensions when using starting points from the
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Figure 4.2: A Absolute relative error 𝜂 of the first estimator in Eq. 4.15 with respect to dimension 𝐷 with
tolerance Θ = 0.01, radius of the reference hyperball 𝑟 = 0.01 and 2000 starting points drawn uniformly
on the reference surface. B Absolute relative error 𝜂 of the estimator in Eq. 4.11 with respect to dimension
𝐷 with tolerance Θ = 0.01, radius of the reference hyperball 𝑟 = 0.01 and 2000 starting points drawn
uniformly in the space Γ − 𝛾 . C Absolute relative error 𝜂 of the first estimator in Eq. 4.15 with respect to
dimension 𝐷 and number of starting points 𝑁𝑇 drawn uniformly on the reference surface with tolerance
Θ = 0.01 and radius of the reference hyperball 𝑟 = 0.01. D Selective trajectories generated by starting
points on the reference surface with radius 𝑟 = 0.01 under gradient ascent dynamics on top of potential
energy plot of the “PowSumCos” potential in 2D. Surface factor is the term in the bracket of Eq. 4.11.
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reference surface. On the other hand, since little space is mapped to almost all the reference

surface, most starting points from the basin of attraction belong to the trajectory with dominant

contribution. These two facts explain why estimators using starting points from the reference

surface underestimate the basin volume while estimators using starting points from the basin of

attraction overestimate the basin volume.

Note that in equality (Eq. 4.7), it is true for any starting probability density in space 𝜌0 (x)

and any dynamics b (x). Hence a generalized version of the key equality is obtained, as shown in

Eq. 4.21. The physical interpretation of Eq. 4.21 is that the overall projective “mass” contribution

of the trajectories generated from starting points on the reference surface should be the “mass” of

the space𝑉Γ−𝛾 , which is 1. However, there is no guarantee that trajectories are terminated at the

boundary of the basin of attraction with an arbitrary dynamics b (x). A termination condition

relying on the original potential 𝑈 (x), ∃𝑖,∇𝑖𝑈 (X (𝑡,x)) · ∇𝑖𝑈 (X (𝑡 + Δ𝑡,x)) ⩽ 0 is used to

terminate trajectories properly.

1 =

∮
𝜕𝛾

n̂ (x) · b (x)
∫ 𝜏 (x)

0
𝜌0 (X (−𝑡,x)) 𝐽 (−𝑡,x) 𝑑𝑡 𝑑x, (4.21)

where 𝐽 (𝑡,x) ≡ exp
(∫ 𝑡

0 ∇ · b (X (𝑠,x)) 𝑑𝑠
)
is the corresponding Jacobian of the dynamics b (x)

and 𝜏 (x) is the stopping time that satisfiesX (−𝜏 (x) ,x) ∈ 𝜕Γ. Then three estimators of volume

in Eq. 4.12 becomes



𝑉Γ−𝛾 =

∮
𝜕𝛾

n̂ (x) · b (x)
∫ 0

𝜏− (x)
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

𝑉𝛾 =

∮
𝜕𝛾

n̂ (x) · b (x)
∫ 𝜏+ (x)

0
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

𝑉Γ =

∮
𝜕𝛾

n̂ (x) · b (x)
∫ 𝜏+ (x)

𝜏− (x)
𝐽 (𝑡,x) 𝑑𝑡 𝑑x

, (4.22)

and the volume of the basin of attraction 𝑉Γ is estimated by Eq. 4.23 if starting points are drawn
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uniformly on the reference surface,

𝑉Γ = 𝑉𝛾 + 𝑆𝜕𝛾
〈
n̂ (x) · b (x)

∫ 0

𝜏− (x)
𝐽 (𝑡,x) 𝑑𝑡

〉
𝜇0

, (4.23)

where 𝐽 (𝑡,x) is the corresponding Jacobian of the dynamics b (x),𝑉𝛾 is the analytical expression

of the volume of the reference hyperball 𝛾 , 𝑆𝜕𝛾 is the analytical expression of the surface of the

reference hyperball 𝛾 and starting points x are drawn uniformly on the reference surface 𝜕𝛾 .

Another estimator of the volume of the basin of attraction 𝑉Γ is shown in Eq. 4.24 if starting

points are drawn uniformly in the space Γ − 𝛾 .

𝑉Γ = 𝑉𝛾 +
𝑆𝜕𝛾〈(

n̂ (x̃) · b (x̃)
∫ 𝜏 (x̃)

0 𝐽 (−𝑡, x̃) 𝑑𝑡
)−1

〉
0

, (4.24)

where x̃ ≡ X (𝜏 (x) ,x) ∈ 𝜕𝛾 is the intersection point between the trajectory generated by the

starting pointx and the reference surface 𝜕𝛾 , 𝜏 (x̃) is the stopping time that satisfiesX (𝜏 (x̃) , x̃) ∈

𝜕Γ, 𝐽 (𝑡,x) is the corresponding Jacobian of the dynamics b (x), 𝑉𝛾 is the analytical expression

of the volume of the reference hyperball 𝛾 , 𝑆𝜕𝛾 is the analytical expression of the surface of the

reference hyperball 𝛾 and starting points x are drawn uniformly in the space Γ − 𝛾 .

In this case, an umbrella-sampling (US)-like flow, as defined in Eq. 4.25, is used to exert some

perturbation so that trajectories are more likely to terminate at points other than spikes of the

hypercube.

bUS (x) ≡ −∇𝑈 (x) − 𝑘 (x − c) , (4.25)

where c is the center of the basin of attraction and 𝑘 ∈ R is a biasing parameter. This flow can

be considered as a flow of umbrella sampling in the window centered at c. When 𝑘 = 0.0, the

US-like flow reduces to that of gradient descent dynamics used previously. When 𝑘 is large, the

US-like flow approaches to that of harmonic potential where density is propagated isotropically.
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The corresponding Jacobian of the US-like flow is

𝐽US (𝑡,x) = 𝐽 (𝑡,x) − 𝑘𝑑, (4.26)

where 𝑑 is the dimension of system and 𝐽 (𝑡,x) is the corresponding Jacobian of the gradient

descent dynamics as defined in Eq. 4.3. Fig. 4.3 A shows the performance (measured by absolute

relative error 𝜂) of the estimator in Eq. 4.23 with respect to dimension 𝐷 with tolerance Θ = 0.01,

radius of the reference hyperball 𝑟 = 0.01 and 2000 starting points drawn uniformly on the refer-

ence surface under an US-like flow with various choices of 𝑘 . Fig. 4.3 B shows the performance

of the estimator in Eq. 4.24 with respect to dimension 𝐷 with tolerance Θ = 0.01, radius of the

reference hyperball 𝑟 = 0.01 and 2000 starting points drawn uniformly in the space Γ − 𝛾 under

an US-like flow with various choices of 𝑘 . The performance of both estimators under an US-like

flow with 𝑘 = 1.0 is significantly improved. Fig. 4.3 C shows the performance of the estimator in

Eq. 4.23 with respect to dimension 𝐷 and number of starting points on the reference surface 𝑁𝑇

with radius 𝑟 = 0.01 and toleranceΘ = 0.01 under an US-like flowwith 𝑘 = 1.0. With more trajec-

tories and thus a larger computational cost, the performance of the estimator under an US-flow

with a proper 𝑘 can be further improved. Fig. 4.3 D shows some sample trajectories on top of the

plot of potential energy of the “PowSumCos” potential in 2D. The difference between contribu-

tion of trajectories under the US-like flow with 𝑘 = 1.0 is much smaller than that of the original

flow (𝑘 = 0.0). This suggests that an optimal flow could potentially be the one with smallest

variance of contribution of trajectories, which is still under investigation.
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Figure 4.3: A Absolute relative error 𝜂 of the estimator in Eq. 4.23 with respect to dimension 𝐷 with
tolerance Θ = 0.01, radius of the reference hyperball 𝑟 = 0.01 and 2000 starting points drawn uniformly
on the reference surface under an US-like flow with various 𝑘s. B Absolute relative error 𝜂 of the estimator
in Eq. 4.24 with respect to dimension 𝐷 with tolerance Θ = 0.01, radius 𝑟 = 0.01 and 2000 starting points
drawn uniformly in the space Γ − 𝛾 under an US-like flow with various 𝑘s. C Absolute relative error 𝜂 of
the estimator in Eq. 4.23 with respect to dimension 𝐷 and number of starting points 𝑁𝑇 drawn uniformly
on the reference surface with tolerance Θ = 0.01 and radius 𝑟 = 0.01 under an US-like flow with 𝑘 = 1.0.
D Sample trajectories generated by starting points on the reference surface with radius 𝑟 = 0.01 under
an US-like flow with 𝑘 = 1.0 on top of potential energy plot of the “PowSumCos” potential in 2D. The
surface factor is the term in the bracket of Eq. 4.23.
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4.5 Conclusions

A density propagation method is used to make use of the whole trajectory for estimating

basin volumes. Following the idea in the previous chapter, a key equality (Eq. 4.7) is obtained,

which can be understood as the “mass” contribution of the trajectory. With this critical equality

(Eq. 4.7), there are two ways to estimate the basin volume. (1) From trajectories generated by

starting points in space 𝑉Γ . (2) From trajectories generated by starting points on the reference

surface 𝑆𝜕𝛾 . Moreover, the unbiased ITNEIS estimators in the previous chapter can be consid-

ered as a special case of the second way with starting points drawn under the surface density 𝜈 ,

defined in Eq. 4.8. The method works well in gaussian potentials and the performance of both

methods are controlled by width Θ in the integral of Jacobian. However, both methods fail in

“PowSumCos” potential, where the basin of attraction is a hypercube with 2𝑑 spikes in 𝑑 dimen-

sions. A generalized version of Eq. 4.7 has been proposed in Eq. 4.21, and the performance of

both methods is considerably improved by umbrella sampling (US)-like flow with proper spring

constant 𝑘 . However, the motivation for selecting 𝑘 to achieve the optimal performance is still

under investigation.
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5 | Conclusion

In this thesis, we take advantages of novel mathematical results of density propagation and

have made three main contributions.

Firstly, we applied the original unbiased nonequilibrium importance sampling (NEIS) estima-

tors from the work of Rotskoff and Vanden-Eijnden under “quench” dynamics to two systems:

independent harmonic springs and alanine dipeptide. In the system of independent harmonic

springs, a nearly exponential decay of mean total energy has been observed when 𝛾 in “quench”

dynamics is adequately small. A proper heuristic for how long simulation of “quench” dynam-

ics should be performed can be made with this observation. “Quench” dynamics itself works

well in system with free energy surface (FES) that has single basin while it solely is not the op-

timal choice for system with FES that has multiple basins, like the case in alanine dipeptide in

vacuum. Combining “quench” dynamics with umbrella sampling can significantly improve the

performance of both sides after reweighting biased results aptly. Regarding “quench” dynamics,

the combined method gives decent results for computing FES with acceptable errors. Regard-

ing umbrella sampling, the combined method has three advantages. (1) It is more efficient since

high energy regions are more likely to be sampled in backward “quench” dynamics and there are

more overlap between umbrella windows. (2) It can get better estimations when chosen collective

variable (CV) is bad. (3) It can make good estimations at various temperatures using the same

trajectories while a normal simulation can only make proper estimation at the same temperature

when sample points are drawn. Furthermore, “quench” dynamics can also be coupled with other
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sophisticated enhanced sampling techniques readily such as solute tempering, as we have shown

in the system of alanine dipeptide in water.

Secondly, we extended the theory of the unbiased NEIS estimators with given trajectories,

standing on the shoulder of Cao and Vanden-Eijnden. After generalizing the unbiased NEIS esti-

mators, we not only gave mathematical and physical interpretation of the generalized unbiased

NEIS estimators but also figured out that conventional way of computing the corresponding vari-

ance is not always true and proposed the correct version of the variance of the unbiased gener-

alized NEIS estimators with the acknowledgment that the source of unbiased property of NEIS

estimators at the sample point x comes from the unbiased contribution of the infinitely long

trajectory generated from any starting point x. It can be further proved by Jensen’s inequality

that ITNEIS estimator is the optimal unbiased NEIS estimator with given trajectory, which is

intuitive. Therefore, the only way to improve the performance of NEIS estimators is choosing

better dynamics or flow, either by solving optimal flow condition or by training flow using deep

learning techniques. In practice, simulations can be terminated when both the numerator and

denominator of ITNEIS estimator converge, although the truncated NEIS estimator is not strictly

unbiased.

Thirdly, we applied so-called density propagation method and took full advantage of the tra-

jectory that determines whether a point in the space belongs to the basin of attraction or not,

which was wasted in previous methods. Several estimators of the volume of the basin of attrac-

tion have been proposed, using trajectories generated by starting points drawn either from space

or from a reference surface. We also recognized that the unbiased ITNEIS estimator used in the

previous chapters can be considered as a special case of density propagation method with a spe-

cially chosen surface density. Themethodworks in the simple case of gaussian potentials but fails

in the more complex case of “PowSumCos” potential, where the basin of attraction has multiple

spikes in high dimensions. A generalized equality that captures “mass” contribution of all trajec-

tories from the reference surface was obtained, which provides space of further improvements of
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performance of the estimators with better dynamics or flow. An umbrella sampling-like dynam-

ics with proper spring constant can considerably improve the performance of the estimators, but

optimizing this approach and determining whether it is more efficient and accurate than other

approaches requires further investigation.
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